
Yuping Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6172278/publications.pdf Version: 2024-02-01

YUDING WU

#	Article	IF	CITATIONS
1	Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472, 57-63.	27.8	4,238
2	Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 2013, 19, 576-585.	30.7	3,355
3	Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. New England Journal of Medicine, 2013, 368, 1575-1584.	27.0	2,537
4	Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 2016, 165, 111-124.	28.9	1,358
5	Gut Microbiota-Dependent Trimethylamine <i>N</i> -Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circulation Research, 2015, 116, 448-455.	4.5	898
6	Prognostic Value of Elevated Levels of Intestinal Microbe-Generated Metabolite Trimethylamine-N-Oxide in Patients With Heart Failure. Journal of the American College of Cardiology, 2014, 64, 1908-1914.	2.8	533
7	Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. European Heart Journal, 2014, 35, 904-910.	2.2	463
8	Î ³ -Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial Metabolism of L-Carnitine to TMAO. Cell Metabolism, 2014, 20, 799-812.	16.2	416
9	A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell, 2020, 180, 862-877.e22.	28.9	397
10	Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. European Heart Journal, 2017, 38, ehw582.	2.2	317
11	An abundant dysfunctional apolipoprotein A1 in human atheroma. Nature Medicine, 2014, 20, 193-203.	30.7	316
12	Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. European Heart Journal, 2019, 40, 583-594.	2.2	297
13	Intestinal Microbiota-Dependent Phosphatidylcholine Metabolites, Diastolic Dysfunction, and Adverse Clinical Outcomes in Chronic Systolic Heart Failure. Journal of Cardiac Failure, 2015, 21, 91-96.	1.7	271
14	Choline Diet and Its Gut Microbe–Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload–Induced Heart Failure. Circulation: Heart Failure, 2016, 9, e002314.	3.9	265
15	l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. Journal of Clinical Investigation, 2018, 129, 373-387.	8.2	216
16	Intestinal Microbiotaâ€Generated Metabolite Trimethylamine― <i>Nâ€</i> Oxide and 5‥ear Mortality Risk in Stable Coronary Artery Disease: The Contributory Role of Intestinal Microbiota in a COURAGEâ€Like Patient Cohort. Journal of the American Heart Association, 2016, 5, .	3.7	198
17	Plasma Trimethylamine N -Oxide, a Gut Microbe–Generated Phosphatidylcholine Metabolite, Is Associated With Atherosclerotic Burden. Journal of the American College of Cardiology, 2016, 67, 2620-2628.	2.8	186
18	Increased Trimethylamine N-Oxide Portends High Mortality Risk Independent of Glycemic Control in Patients with Type 2 Diabetes Mellitus. Clinical Chemistry, 2017, 63, 297-306.	3.2	181

YUPING WU

#	Article	IF	CITATIONS
19	Trimethylamine <i>N</i> â€Oxide and Mortality Risk in Patients With Peripheral Artery Disease. Journal of the American Heart Association, 2016, 5, .	3.7	133
20	Prognostic Role of Serum Chloride Levels in Acute Decompensated Heart Failure. Journal of the American College of Cardiology, 2015, 66, 659-666.	2.8	123
21	Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight, 2018, 3, .	5.0	122
22	The Heart Failure Overweight/Obesity Survival Paradox. JACC: Heart Failure, 2015, 3, 917-926.	4.1	80
23	Trimethyllysine, a trimethylamine N-oxide precursor, provides near- and long-term prognostic value in patients presenting with acute coronary syndromes. European Heart Journal, 2019, 40, 2700-2709.	2.2	79
24	Elevated Plasma Marinobufagenin, An Endogenous Cardiotonic Steroid, Is Associated With Right Ventricular Dysfunction and Nitrative Stress in Heart Failure. Circulation: Heart Failure, 2015, 8, 1068-1076.	3.9	48
25	Increased mortality with elevated plasma endothelinâ€1 in acute heart failure: an ASCENDâ€HF biomarker substudy. European Journal of Heart Failure, 2016, 18, 290-297.	7.1	47
26	Prognostic Value of Baseline and ChangesÂin Circulating Soluble ST2 LevelsÂand the Effects of Nesiritide in Acute Decompensated Heart Failure. JACC: Heart Failure, 2016, 4, 68-77.	4.1	45
27	Elevated levels of plasma symmetric dimethylarginine and increased arginase activity as potential indicators of cardiovascular comorbidity in rheumatoid arthritis. Arthritis Research and Therapy, 2018, 20, 123.	3.5	42
28	Prognostic Value of Elevated Serum Ceruloplasmin Levels in Patients With Heart Failure. Journal of Cardiac Failure, 2014, 20, 946-952.	1.7	38
29	Prognostic Comparison of Different Sensitivity Cardiac Troponin Assays in Stable Heart Failure. American Journal of Medicine, 2015, 128, 276-282.	1.5	37
30	Impact of Atrial Fibrillation on Exercise Capacity and Mortality in Heart Failure With Preserved Ejection Fraction: Insights From Cardiopulmonary Stress Testing. Journal of the American Heart Association, 2017, 6, .	3.7	36
31	Prognostic role of cardiac power index in ambulatory patients with advanced heart failure. European Journal of Heart Failure, 2015, 17, 689-696.	7.1	35
32	Sex Differences in the Etiology of Surgical Mitral Valve Disease. Circulation, 2018, 138, 1749-1751.	1.6	35
33	Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. American Heart Journal, 2021, 236, 80-86.	2.7	35
34	Elevated Soluble Fms-Like Tyrosine Kinase-1 and Placental-Like Growth Factor Levels Are Associated With Development and Mortality Risk in Heart Failure. Circulation: Heart Failure, 2016, 9, e002115.	3.9	34
35	Prognostic Value of Estimated Functional Capacity Incremental to Cardiac Biomarkers in Stable Cardiac Patients. Journal of the American Heart Association, 2014, 3, e000960.	3.7	29
36	Highâ€density lipoproteinâ€associated paraoxonaseâ€1 activity for prediction of adverse outcomes in outpatients with chronic heart failure. European Journal of Heart Failure, 2017, 19, 748-755.	7.1	27

YUPING WU

#	Article	IF	CITATIONS
37	Diminished Antioxidant Activity of Highâ€Density Lipoprotein–Associated Proteins in Chronic Kidney Disease. Journal of the American Heart Association, 2013, 2, .	3.7	26
38	Genetic, dietary, and sex-specific regulation of hepatic ceramides and the relationship between hepatic ceramides and IR [S]. Journal of Lipid Research, 2018, 59, 1164-1174.	4.2	26
39	Comparison Between the Kansas City Cardiomyopathy Questionnaire and New York Heart Association in Assessing Functional Capacity and Clinical Outcomes. Journal of Cardiac Failure, 2017, 23, 280-285.	1.7	22
40	Circulating Kidney Injury Molecule-1 Levels in Acute Heart Failure. JACC: Heart Failure, 2015, 3, 777-785.	4.1	19
41	Interleukin-6 and Outcomes in Acute Heart Failure: An ASCEND-HF Substudy. Journal of Cardiac Failure, 2021, 27, 670-676.	1.7	16
42	Relation of Red Cell Distribution Width to Left Ventricular End-Diastolic Pressure and Mortality in Patients With and Without Heart Failure. American Journal of Cardiology, 2017, 119, 1421-1427.	1.6	13
43	Biomarkers of Cardiovascular Disease. Disease Markers, 2017, 2017, 1-2.	1.3	13
44	Predictors of cardiorespiratory fitness improvement in phase II cardiac rehabilitation. Clinical Cardiology, 2018, 41, 1563-1569.	1.8	13
45	Usefulness of Relative Hypochromia in Risk Stratification for Nonanemic Patients With Chronic Heart Failure. American Journal of Cardiology, 2016, 117, 1299-1304.	1.6	10
46	Prognostic value of subclinical myocardial necrosis using high-sensitivity cardiac troponin T in patients with prediabetes. Cardiovascular Diabetology, 2021, 20, 171.	6.8	10
47	Prevalence and Prediction of Obstructive Coronary Artery Disease in Patients Referred for Valvular Heart Surgery. American Journal of Cardiology, 2015, 116, 280-285.	1.6	9
48	Predicting long-term prognosis in stable peripheral artery disease with baseline functional capacity estimated by the Duke Activity Status Index. American Heart Journal, 2017, 184, 17-25.	2.7	8
49	Use of Sex-Specific Clinical and Exercise Risk Scores to Identify Patients at Increased Risk for All-Cause Mortality. JAMA Cardiology, 2017, 2, 15.	6.1	8
50	Exercise Ventricular Rates, Cardiopulmonary Exercise Performance, and Mortality in Patients With Heart Failure With Atrial Fibrillation. Circulation: Heart Failure, 2021, 14, e007451.	3.9	3
51	Changes in Carotid Duplex Ultrasound Velocities After Aortic Valve Replacement for Severe Aortic Stenosis. Journal of Ultrasound in Medicine, 2020, 39, 139-145.	1.7	2
52	Associations between cardiorespiratory fitness, sex and long term mortality amongst adults undergoing exercise treadmill testing. International Journal of Cardiology, 2021, 342, 103-107.	1.7	1
53	Maximizing Exploratory Predictive Models. Journal of Cardiac Failure, 2018, 24, 135-136.	1.7	0
54	Abstract 19496: A New Exercise Testing Model Performs Better than the Duke Treadmill Score to Identify Patients at Increased Risk for All-cause Mortality. Circulation, 2015, 132, .	1.6	0