
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6172110/publications.pdf Version: 2024-02-01

INA-MIN NAM

#	Article	IF	CITATIONS
1	Ring-in-a-Triangle Nanoframes: Integrating with Intra- and Interhotspots for Highly Amplified Near-Field Focusing. Nano Letters, 2022, 22, 1734-1740.	9.1	14
2	Enormous Enhancement in Single-Particle Surface-Enhanced Raman Scattering with Size-Controllable Au Double Nanorings. Chemistry of Materials, 2022, 34, 2197-2205.	6.7	13
3	Plasmon-Enhanced Spectroscopy. , 2022, , 135-173.		0
4	DNA Nanotechnology for Plasmonics. , 2022, , 271-323.		0
5	Multiplex SNP Genotyping Using SWITCH: Sequenceâ€Specific Nanoparticle with Interpretative Toeholdâ€Mediated Sequence Decoding in Hydrogel. Small, 2022, 18, e2105538.	10.0	7
6	Heterogeneous Component Au (Outer)–Pt (Middle)–Au (Inner) Nanorings: Synthesis and Vibrational Characterization on Middle Pt Nanorings with Surface-Enhanced Raman Scattering. ACS Nano, 2022, 16, 11259-11267.	14.6	11
7	Singleâ€Particle Analysis on Plasmonic Nanogap Systems for Quantitative SERS. Journal of Raman Spectroscopy, 2021, 52, 375-385.	2.5	42
8	Highly Efficient Photothermal Therapy with Cell-Penetrating Peptide-Modified Bumpy Au Triangular Nanoprisms using Low Laser Power and Low Probe Dose. Nano Letters, 2021, 21, 731-739.	9.1	34
9	A rapid and sensitive fluorescence biosensor based on plasmonic PCR. Nanoscale, 2021, 13, 7348-7354.	5.6	19
10	One-Pot Heterointerfacial Metamorphosis for Synthesis and Control of Widely Varying Heterostructured Nanoparticles. Journal of the American Chemical Society, 2021, 143, 3383-3392.	13.7	9
11	Electrochromic response and control of plasmonic metal nanoparticles. Nanoscale, 2021, 13, 9541-9552.	5.6	9
12	Au nanolenses for near-field focusing. Chemical Science, 2021, 12, 6355-6361.	7.4	10
13	DNA-Engineerable Ultraflat-Faceted Core–Shell Nanocuboids with Strong, Quantitative Plasmon-Enhanced Fluorescence Signals for Sensitive, Reliable MicroRNA Detection. Nano Letters, 2021, 21, 2132-2140.	9.1	31
14	Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. Advanced Materials, 2021, 33, e2006966.	21.0	58
15	Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. Advanced Materials, 2021, 33, e2007668.	21.0	70
16	Webâ€aboveâ€aâ€Ring (WAR) and Webâ€aboveâ€a‣ens (WAL): Nanostructures for Highly Engineered Plasmonicâ€Field Tuning and SERS Enhancement. Small, 2021, 17, e2101262.	10.0	10
17	Au Nanorings with Intertwined Triple Rings. Journal of the American Chemical Society, 2021, 143, 15113-15119.	13.7	14
18	Nontrivial, Unconventional Electrochromic Behaviors of Plasmonic Nanocubes. Nano Letters, 2021, 21, 7512-7518.	9.1	10

#	Article	IF	CITATIONS
19	Synthesis of morphology controlled PtAu@Ag nanorings through concentric and eccentric growth pathways. Chemical Communications, 2021, 57, 10616-10619.	4.1	4
20	Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures (Adv. Mater. 46/2021). Advanced Materials, 2021, 33, 2170360.	21.0	13
21	Programmable Materials. Advanced Materials, 2021, 33, e2107344.	21.0	8
22	Polysorbate- and DNA-Mediated Synthesis and Strong, Stable, and Tunable Near-Infrared Photoluminescence of Plasmonic Long-Body Nanosnowmen. ACS Nano, 2021, 15, 19853-19863.	14.6	6
23	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
24	Three-Dimensional Gold Nanosphere Hexamers Linked with Metal Bridges: Near-Field Focusing for Single Particle Surface Enhanced Raman Scattering. Journal of the American Chemical Society, 2020, 142, 15412-15419.	13.7	26
25	Cyclodextrin-Based Synthesis and Host–Guest Chemistry of Plasmonic Nanogap Particles with Strong, Quantitative, and Highly Multiplexable Surface-Enhanced Raman Scattering Signals. Journal of Physical Chemistry Letters, 2020, 11, 8358-8364.	4.6	18
26	Nanoparticle-based computing architecture for nanoparticle neural networks. Science Advances, 2020, 6, eabb3348.	10.3	15
27	Synthesis and Surface Plasmonic Characterization of Asymmetric Au Split Nanorings. Nano Letters, 2020, 20, 7774-7782.	9.1	27
28	Synthesis and Single-Particle Surface-Enhanced Raman Scattering Study of Plasmonic Tripod Nanoframes with Y-Shaped Hot-Zones. Nano Letters, 2020, 20, 4362-4369.	9.1	38
29	Silver Double Nanorings with Circular Hot Zone. Journal of the American Chemical Society, 2020, 142, 12341-12348.	13.7	31
30	Detection of Viruses: A Lipidâ€Nanopillarâ€Arrayâ€Based Immunosorbent Assay (Adv. Mater. 26/2020). Advanced Materials, 2020, 32, 2070195.	21.0	2
31	A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nature Nanotechnology, 2020, 15, 321-330.	31.5	83
32	A Lipidâ€Nanopillarâ€Arrayâ€Based Immunosorbent Assay. Advanced Materials, 2020, 32, e2001360.	21.0	18
33	Plasmonic Photothermal Nanoparticles for Biomedical Applications. Advanced Science, 2019, 6, 1900471.	11.2	420
34	Statistical Modeling of Ligand-Mediated Multimeric Nanoparticle Assembly. Journal of Physical Chemistry C, 2019, 123, 21195-21206.	3.1	4
35	Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO ₂ to fuel conversion. Chemical Science, 2019, 10, 6594-6603.	7.4	89
36	Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes. Accounts of Chemical Research, 2019, 52, 2793-2805.	15.6	15

#	Article	IF	CITATIONS
37	Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering. Analytical Chemistry, 2019, 91, 10467-10476.	6.5	31
38	Biocomputing with Nanostructures on Lipid Bilayers. Small, 2019, 15, e1900998.	10.0	10
39	Nano-bio-computing lipid nanotablet. Science Advances, 2019, 5, eaau2124.	10.3	28
40	Chemical Nanoplasmonics: Emerging Interdisciplinary Research Field at Crossroads between Nanoscale Chemistry and Plasmonics. Accounts of Chemical Research, 2019, 52, 2995-2996.	15.6	14
41	Surface-enhanced Raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures. Nanoscale, 2019, 11, 20379-20391.	5.6	42
42	Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chemical Reviews, 2019, 119, 12208-12278.	47.7	289
43	Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications. Journal of Solid State Chemistry, 2019, 270, 295-303.	2.9	26
44	Nonnobleâ€Metalâ€Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives. Advanced Materials, 2018, 30, e1704528.	21.0	160
45	Dealloyed Intra-Nanogap Particles with Highly Robust, Quantifiable Surface-Enhanced Raman Scattering Signals for Biosensing and Bioimaging Applications. ACS Central Science, 2018, 4, 277-287.	11.3	54
46	Plasmonic Nanomaterials: Nonnobleâ€Metalâ€Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives (Adv. Mater. 42/2018). Advanced Materials, 2018, 30, 1870320.	21.0	19
47	Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. Journal of Industrial and Engineering Chemistry, 2018, 66, 387-395.	5.8	50
48	Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering. Nano Letters, 2018, 18, 6475-6482.	9.1	138
49	Quantitative Nanoplasmonics. ACS Central Science, 2018, 4, 1303-1314.	11.3	38
50	Optokinetically Encoded Nanoprobe-Based Multiplexing Strategy for MicroRNA Profiling. Journal of the American Chemical Society, 2017, 139, 3558-3566.	13.7	59
51	Golden Opportunities: Plasmonic Gold Nanostructures for Biomedical Applications based on the Second Nearâ€Infrared Window. Small Methods, 2017, 1, 1600032.	8.6	99
52	Hotâ€Electronâ€Mediated Photochemical Reactions: Principles, Recent Advances, and Challenges. Advanced Optical Materials, 2017, 5, 1700004.	7.3	142
53	Associating and Dissociating Nanodimer Analysis for Quantifying Ultrasmall Amounts of DNA. Angewandte Chemie - International Edition, 2017, 56, 9877-9880.	13.8	22
54	Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chemical Science, 2017, 8, 4696-4704.	7.4	78

#	Article	IF	CITATIONS
55	Myoglobin and Polydopamineâ€Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells. Small, 2017, 13, 1701584.	10.0	44
56	Transformative Heterointerface Evolution and Plasmonic Tuning of Anisotropic Trimetallic Nanoparticles. Journal of the American Chemical Society, 2017, 139, 10180-10183.	13.7	53
57	Associating and Dissociating Nanodimer Analysis for Quantifying Ultrasmall Amounts of DNA. Angewandte Chemie, 2017, 129, 10009-10012.	2.0	2
58	Hotâ€Electronâ€Mediated Reactions: Hotâ€Electronâ€Mediated Photochemical Reactions: Principles, Recent Advances, and Challenges (Advanced Optical Materials 15/2017). Advanced Optical Materials, 2017, 5, .	7.3	4
59	Sensitive, Quantitative Nakedâ€Eye Biodetection with Polyhedral Cu Nanoshells. Advanced Materials, 2017, 29, 1702945.	21.0	33
60	Frontiers in Nanointerfaces Research. Small, 2017, 13, 1703364.	10.0	2
61	Assembling and Powering Up Nanostructures!. ChemNanoMat, 2017, 3, 668-669.	2.8	0
62	Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle. BMB Reports, 2016, 49, 116-121.	2.4	12
63	Synthesis, Optical Properties, and Multiplexed Raman Bioâ€Imaging of Surface Roughnessâ€Controlled Nanobridged Nanogap Particles. Small, 2016, 12, 4726-4734.	10.0	54
64	Protein–Nanoparticle Interactionâ€Induced Changes in Protein Structure and Aggregation. Chemistry - an Asian Journal, 2016, 11, 1869-1877.	3.3	45
65	How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?. Scientific Reports, 2016, 6, 19548.	3.3	88
66	Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles. Nanoscale, 2016, 8, 11707-11717.	5.6	38
67	Plasmonically Engineered Nanoprobes for Biomedical Applications. Journal of the American Chemical Society, 2016, 138, 14509-14525.	13.7	183
68	Metal Nanoparticles for Virus Detection. ChemNanoMat, 2016, 2, 927-936.	2.8	22
69	Sub-one-nanometer gap (SONG) for nanogap-enhanced Raman scattering (NERS). Proceedings of SPIE, 2016, , .	0.8	0
70	Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Accounts of Chemical Research, 2016, 49, 2746-2755.	15.6	331
71	Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles. Nano Letters, 2016, 16, 7962-7967.	9.1	45
72	Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System. Advanced Functional Materials, 2015, 25, 7109-7118.	14.9	155

#	Article	IF	CITATIONS
73	Controlled Co-Assembly of Nanoparticles and Polymer into Ultralong and Continuous One-Dimensional Nanochains. Journal of the American Chemical Society, 2015, 137, 8030-8033.	13.7	35
74	Transparent, Nanoporous, and Transferable Membraneâ€Based Cell–Cell Paracrine Signaling Assay. Advanced Materials, 2015, 27, 1893-1899.	21.0	11
75	Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries. Nano Letters, 2015, 15, 4628-4636.	9.1	51
76	Radionuclide-labeled nanostructures for In Vivo imaging of cancer. Nano Convergence, 2015, 2, .	12.1	13
77	Membranes: Transparent, Nanoporous, and Transferable Membrane-Based Cell-Cell Paracrine Signaling Assay (Adv. Mater. 11/2015). Advanced Materials, 2015, 27, 1802-1802.	21.0	0
78	Darkâ€Fieldâ€Based Observation of Singleâ€Nanoparticle Dynamics on a Supported Lipid Bilayer for In Situ Analysis of Interacting Molecules and Nanoparticles. ChemPhysChem, 2015, 16, 77-84.	2.1	4
79	Supported lipid bilayers as dynamic platforms for tethered particles. Nanoscale, 2015, 7, 66-76.	5.6	13
80	Correlation studies between localized surface plasmons and surface-enhanced Raman scattering of Gold-Silver NanoDumbbells (GSNDs) at the single-particle and single-molecule level. , 2014, , .		0
81	Oxidative Nanopeeling Chemistry-Based Synthesis and Photodynamic and Photothermal Therapeutic Applications of Plasmonic Core-Petal Nanostructures. Journal of the American Chemical Society, 2014, 136, 16317-16325.	13.7	152
82	Amyloidâ€Ĵ² Aggregation with Gold Nanoparticles on Brain Lipid Bilayer. Small, 2014, 10, 1779-1789.	10.0	25
83	Thiolated DNA-Based Chemistry and Control in the Structure and Optical Properties of Plasmonic Nanoparticles with Ultrasmall Interior Nanogap. Journal of the American Chemical Society, 2014, 136, 14052-14059.	13.7	122
84	Plasmonic Nanosnowmen with a Conductive Junction as Highly Tunable Nanoantenna Structures and Sensitive, Quantitative and Multiplexable Surface-Enhanced Raman Scattering Probes. Nano Letters, 2014, 14, 6217-6225.	9.1	127
85	Massively Parallel and Highly Quantitative Single-Particle Analysis on Interactions between Nanoparticles on Supported Lipid Bilayer. Journal of the American Chemical Society, 2014, 136, 4081-4088.	13.7	48
86	Bio-barcode gel assay for microRNA. Nature Communications, 2014, 5, 3367.	12.8	85
87	Surface Passivation for Single-molecule Protein Studies. Journal of Visualized Experiments, 2014, , .	0.3	153
88	High-precision measurement-based correlation studies among atomic force microscopy, Rayleigh scattering, and surface-enhanced Raman scattering at the single-molecule level. Physical Chemistry Chemical Physics, 2013, 15, 4243.	2.8	11
89	Natural Polypeptide-Based Supramolecular Nanogels for Stable Noncovalent Encapsulation. Biomacromolecules, 2013, 14, 3515-3522.	5.4	49
90	Protein-coated nanofibers for promotion of T cell activity. Chemical Communications, 2013, 49, 3949.	4.1	7

#	Article	IF	CITATIONS
91	Tuning and assembling metal nanostructures with DNA. Chemical Communications, 2013, 49, 2597.	4.1	49
92	Clutathione Dimerization-Based Plasmonic Nanoswitch for Biodetection of Reactive Oxygen and Nitrogen Species. ACS Nano, 2013, 7, 2221-2230.	14.6	48
93	Lipid-nanostructure hybrids and their applications in nanobiotechnology. NPG Asia Materials, 2013, 5, e48-e48.	7.9	46
94	Single-Molecule and Single-Particle-Based Correlation Studies between Localized Surface Plasmons of Dimeric Nanostructures with â^1⁄41 nm Gap and Surface-Enhanced Raman Scattering. Nano Letters, 2013, 13, 6113-6121.	9.1	76
95	DNAâ€ŧailored plasmonic nanoparticles for biosensing applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 96-109.	6.1	14
96	Directional Synthesis and Assembly of Bimetallic Nanosnowmen with DNA. Journal of the American Chemical Society, 2012, 134, 5456-5459.	13.7	107
97	Engineered Nanostructures for the Ultrasensitive DNA Detection. Soft and Biological Matter, 2012, , 67-87.	0.3	2
98	Tuning and Maximizing the Single-Molecule Surface-Enhanced Raman Scattering from DNA-Tethered Nanodumbbells. ACS Nano, 2012, 6, 9574-9584.	14.6	134
99	Electrofluidic Lipid Membrane Biosensor. Small, 2012, 8, 832-837.	10.0	16
100	Fabrication and verification of DNA functionalized nanopore with gold layer embedded structure for bio-molecular sensing. , 2011, , .		0
101	Highly stable, amphiphilic DNA-encoded nanoparticle conjugates for DNA encoding/decoding applications. Journal of Materials Chemistry, 2011, 21, 9467.	6.7	10
102	Nanoparticle-Functionalized Polymer Platform for Controlling Metastatic Cancer Cell Adhesion, Shape, and Motility. ACS Nano, 2011, 5, 5444-5456.	14.6	31
103	Responsive nematic gels from the self-assembly of aqueous nanofibres. Nature Communications, 2011, 2, 459.	12.8	105
104	UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 9799-9806.	14.6	350
105	Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nature Nanotechnology, 2011, 6, 452-460.	31.5	1,009
106	Fibronectin–Carbonâ€Nanotube Hybrid Nanostructures for Controlled Cell Growth. Small, 2011, 7, 56-61.	10.0	71
107	Minimally Stable Nanoparticleâ€Based Colorimetric Assay for Simple, Rapid, and Sensitive Antibody Structure and Activity Evaluation. Small, 2011, 7, 648-655.	10.0	15
108	Hybrid Nanostructures: Fibronectin-Carbon-Nanotube Hybrid Nanostructures for Controlled Cell Growth (Small 1/2011). Small, 2011, 7, 55-55.	10.0	0

#	Article	IF	CITATIONS
109	Tumor Targeting and Imaging Using Cyclic RGDâ€PEGylated Gold Nanoparticle Probes with Directly Conjugated Iodineâ€125. Small, 2011, 7, 2052-2060.	10.0	173
110	Biomimetic Nanopatterns as Enabling Tools for Analysis and Control of Live Cells. Advanced Materials, 2010, 22, 4551-4566.	21.0	149
111	Multifunctional nanocomposite membrane for chemomechanical transducer. Sensors and Actuators B: Chemical, 2010, 147, 691-696.	7.8	14
112	Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Materials, 2010, 9, 60-67.	27.5	1,083
113	Restrictionâ€Enzyme oded Goldâ€Nanoparticle Probes for Multiplexed DNA Detection. Small, 2009, 5, 2665-2668.	10.0	31
114	Tunable Layer-by-Layer Polyelectrolyte Platforms for Comparative Cell Assays. Biomacromolecules, 2009, 10, 2254-2260.	5.4	26
115	Single Nanoparticle Tracking-Based Detection of Membrane Receptorâ^'Ligand Interactions. Analytical Chemistry, 2009, 81, 2564-2568.	6.5	35
116	Functional nanomaterial-based amplified bio-detection strategies. Journal of Materials Chemistry, 2009, 19, 2107.	6.7	16
117	Directâ€Write Nanoparticle Microarrays for Cell Assays. Small, 2008, 4, 1930-1935.	10.0	10
118	Lipid–Goldâ€Nanoparticle Hybridâ€Based Gene Delivery. Small, 2008, 4, 1651-1655.	10.0	60
119	Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. Nanomedicine, 2008, 3, 215-232.	3.3	58
120	DNA-embedded Au/Ag core–shell nanoparticles. Chemical Communications, 2008, , 5312.	4.1	84
121	Stepwise silver-staining-based immunosorbent assay for amyloid-β autoantibody detection. Nanomedicine, 2008, 3, 485-493.	3.3	5
122	Carbon Nanotube Monolayer Patterns for Directed Growth of Mesenchymal Stem Cells. Advanced Materials, 2007, 19, 2530-2534.	21.0	75
123	Detection of proteins using a colorimetric bio-barcode assay. Nature Protocols, 2007, 2, 1438-1444.	12.0	113
124	A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab on A Chip, 2006, 6, 1293.	6.0	199
125	A Fluorophore-Based Bio-Barcode Amplification Assay for Proteins. Small, 2006, 2, 103-108.	10.0	131
126	A Fluid Membrane-Based Soluble Ligand-Display System for Live-Cell Assays. ChemBioChem, 2006, 7, 436-440.	2.6	35

#	ARTICLE	IF	CITATIONS
127	A modular microfluidic architecture for integrated biochemical analysis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9745-9750.	7.1	177
128	Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2273-2276.	7.1	790
129	Colorimetric Bio-Barcode Amplification Assay for Cytokines. Analytical Chemistry, 2005, 77, 6985-6988.	6.5	120
130	Cyclopentane-modified PNA improves the sensitivity of nanoparticle-based scanometric DNA detection. Chemical Communications, 2005, , 2101.	4.1	23
131	Bioactive Protein Nanoarrays on Nickel Oxide Surfaces Formed by Dip-Pen Nanolithography. Angewandte Chemie - International Edition, 2004, 43, 1246-1249.	13.8	120
132	Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity. Journal of the American Chemical Society, 2004, 126, 5932-5933.	13.7	750
133	Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science, 2003, 301, 1884-1886.	12.6	2,354
134	Real-Time Multicolor DNA Detection with Chemoresponsive Diffraction Gratings and Nanoparticle Probes. Journal of the American Chemical Society, 2003, 125, 13541-13547.	13.7	138
135	Living Templates for the Hierarchical Assembly of Gold Nanoparticles. Angewandte Chemie - International Edition, 2003, 42, 2306-2309.	13.8	132
136	Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces. Angewandte Chemie - International Edition, 2003, 42, 2309-2312.	13.8	208
137	Raman Dye-Labeled Nanoparticle Probes for Proteins. Journal of the American Chemical Society, 2003, 125, 14676-14677.	13.7	446
138	Single-Walled Carbon Nanotubes and C60Encapsulated by a Molecular Macrocycle. Journal of Physical Chemistry B, 2003, 107, 4705-4710.	2.6	8
139	PCR-like sensitivity for proteins with bio-bar-code amplification. Discovery Medicine, 2003, 3, 58-60.	0.5	4
140	Bio-Barcodes Based on Oligonucleotide-Modified Nanoparticles. Journal of the American Chemical Society, 2002, 124, 3820-3821.	13.7	263
141	Trends and Perspectives in Bio- and Eco-friendly Sustainable Nanomaterial Delivery Systems Through Biological Barriers. Materials Chemistry Frontiers, 0, , .	5.9	4