List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6171706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UV light-driven asymmetric vinylogous aldol reaction of isatins with 2-alkylbenzophenones and enantioselective synthesis of 3-hydroxyoxindoles. Organic Chemistry Frontiers, 2022, 9, 643-648.	4.5	4
2	Diethyl phosphite mediated reductive [1Â+ 4] annulation of α-ketoesters with α, β-unsaturated ketones and synthesis of polysubstituted 2,3-dihydrofurans. Tetrahedron, 2022, 106-107, 132646.	1.9	4
3	Development of photochromic fused 2 <i>H</i> -naphthopyrans with promising thermal fading rates. Journal of Materials Chemistry C, 2022, 10, 5542-5549.	5.5	3
4	Visible light-driven [3 + 3] annulation reaction of 2 <i>H</i> -azirines with Huisgen zwitterions and synthesis of 1,2,4-triazines. Organic Chemistry Frontiers, 2022, 9, 3342-3347.	4.5	11
5	P(NMe ₂) ₃ -Mediated Reductive Intramolecular Annulation of Benzoylformates Tethered with a Trisubstituted Alkene Unit and Synthesis of 2,2-Disubstituted 2 <i>H</i> -Chromenes. Organic Letters, 2021, 23, 1880-1885.	4.6	21
6	Chiral phosphine-catalyzed asymmetric [4Â+Â1] annulation of polar dienes with allylic derivatives: Enantioselective synthesis of substituted cyclopentenes. Tetrahedron Letters, 2021, 67, 152863.	1.4	4
7	P(NMe ₂) ₃ â€Mediated Reductive (1+4) Annulation Reaction of <i>α</i> â€Keto Esters with Nitroalkenes: A Facile Synthesis of Polysubstituted Isoxazoline <i>N</i> â€Oxides. ChemistrySelect, 2021, 6, 4400-4403.	1.5	2
8	Phosphine atalyzed [3+2] and [2+4] Annulations of γâ€Methyl Allenoates with Aryl αâ€Keto Esters: Stereoselective Syntheses of Functionalized Tetrahydrofurans and 4â€Chromanols. Asian Journal of Organic Chemistry, 2020, 9, 86-93.	2.7	5
9	P ^{III} -Mediated intramolecular cyclopropanation and metal-free synthesis of cyclopropane-fused heterocycles. Chemical Communications, 2020, 56, 10251-10254.	4.1	25
10	Enantiopure Chiral Phosphines Bearing a Sulfinyl Group and their Application in Catalytic Enantiodivergent Synthesis of Polysubstituted Pyrrolines. Advanced Synthesis and Catalysis, 2020, 362, 2760-2766.	4.3	6
11	Catalytic asymmetric (4 + 1) annulation of nitroalkenes with allylic acetates: stereoselective synthesis of isoxazoline <i>N</i> -oxides. Organic and Biomolecular Chemistry, 2019, 17, 6989-6993.	2.8	10
12	Phosphine-Catalyzed Chemo- and Diastereoselective [2 + 2 + 2] and [3 + 2] Annulations of Î ³ -Methyl Allenoates with Doubly Activated Olefins: Syntheses of Highly Substituted Cyclohexanes and Cyclopentenes. Journal of Organic Chemistry, 2019, 84, 12490-12498.	3.2	23
13	Convergent Synthesis of Polysubstituted Furans via Catalytic Phosphine Mediated Multicomponent Reactions. Molecules, 2019, 24, 4595.	3.8	1
14	Organocatalytic asymmetric cascade cyclization reaction of o-hydroxy cinnamaldehydes with diphenylphosphine oxide. Chinese Chemical Letters, 2018, 29, 1625-1628.	9.0	5
15	Recent renewed interest in the classical Kukhtin-Ramirez adducts. Tetrahedron Letters, 2018, 59, 4136-4148.	1.4	40
16	Amine-Catalyzed Three-Component Cascade Reaction between Alcohols or Thiols, Activated Alkenes, and Enones: A Simple and Chemoselective Synthesis of Densely Functionalized Compounds. Synthesis, 2017, 49, 2205-2214.	2.3	1
17	Facile Synthesis of Spirooxindoleâ€Cyclohexenes via Phosphineâ€Catalyzed [4 + 2] Annulation of <i>î±</i> ‣ubstituted Allenoates. Chinese Journal of Chemistry, 2017, 35, 1469-1473.	4.9	8
18	Enantioselective [4 + 1]-Annulation of α,β-Unsaturated Imines with Allylic Carbonates Catalyzed by a Hybrid <i>P</i> -Chiral Phosphine Oxide–Phosphine. Organic Letters, 2017, 19, 5637-5640.	4.6	54

#	Article	IF	CITATIONS
19	P(NMe ₂) ₃ -Mediated Reductive (1 + 4) Annulation Reaction of Isatins with Nitroalkenes: An Access to Spirooxindolyl Isoxazoline <i>N</i> -Oxides and Their Corresponding Isoxazolines. Journal of Organic Chemistry, 2017, 82, 10997-11007.	3.2	27
20	Amine atalyzed Tandem Reactions of Morita–Baylis–Hillman Acetates with Isatins: Facile Synthesis of 3â€Hydroxyoxindoles. European Journal of Organic Chemistry, 2017, 2017, 6154-6159.	2.4	2
21	Unusual Formal [1+4] Annulation through Tandem P(NMe ₂) ₃ â€Mediated Cyclopropanation/Base atalyzed Cyclopropane Rearrangement: Facile Syntheses of Cyclopentenimines and Cyclopentenones. Chemistry - A European Journal, 2016, 22, 5883-5887.	3.3	34
22	Advances in Annulation Reactions Initiated by Phosphorus Ylides Generated in situ. European Journal of Organic Chemistry, 2016, 2016, 1937-1954.	2.4	55
23	Annulation Reaction of 3-Acylmethylidene Oxindoles with Huisgen Zwitterions and Its Applications in the Syntheses of Pyrrolo[4,3,2-de]quinolinones and Marine Alkaloids Ammosamides. Organic Letters, 2016, 18, 1486-1489.	4.6	19
24	Phosphine-Catalyzed (4 + 1) Annulation of o-Hydroxyphenyl and o-Aminophenyl Ketones with Allylic Carbonates: Syntheses and Transformations of 3-Hydroxy-2,3-Disubstituted Dihydrobenzofurans and Indolines. Journal of Organic Chemistry, 2016, 81, 4690-4700.	3.2	28
25	Divergent Reactivity of Nitrocyclopropanes with Huisgen Zwitterions and Facile Syntheses of 3-Alkoxy Pyrazolines and Pyrazoles. Organic Letters, 2016, 18, 4936-4939.	4.6	26
26	P(NMe ₂) ₃ -mediated reductive [1+4] annulation of isatins with enones: a facile synthesis of spirooxindole-dihydrofurans. Chemical Communications, 2015, 51, 14663-14666.	4.1	61
27	Construction of dispirocyclohexanes via amine-catalyzed [2 + 2 + 2] annulations of Morita–Baylis–Hillman acetates with exocyclic alkenes. Organic and Biomolecular Chemistry, 2015, 13, 398-408.	2.8	32
28	Ethoxide-Mediated Condensation of γ-tert-Butylallenoate and Aldehydes: Facile Stereoselective Synthesis of Conjugated Dienes and Enynes. Synthesis, 2014, 46, 2085-2092.	2.3	1
29	Phosphaneâ€Catalyzed [4+1] Annulation between Nitroalkenes and Morita–Baylis–Hillman Carbonates: Facile Synthesis of Isoxazoline <i>N</i> â€Oxides by Phosphorus Ylides. Chemistry - an Asian Journal, 2014, 9, 1183-1189.	3.3	32
30	Diastereoselective Synthesis of Functionalized Spirocyclopropyl Oxindoles via P(NMe ₂) ₃ -Mediated Reductive Cyclopropanation. Journal of Organic Chemistry, 2014, 79, 10709-10715.	3.2	72
31	Phosphine-catalyzed [4+1] annulation of 1,3-(aza)dienes with maleimides: highly efficient construction of azaspiro[4.4]nonenes. Chemical Communications, 2014, 50, 13506-13509.	4.1	35
32	Lewisâ€Baseâ€Catalyzed Annulations of Nitroallylic Acetates as <i>C₃</i> Synthons with Electronâ€Deficient Alkenes. Asian Journal of Organic Chemistry, 2014, 3, 877-885.	2.7	22
33	Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study. Bioorganic and Medicinal Chemistry, 2014, 22, 303-310.	3.0	7
34	Recent advances in stoichiometric phosphine-mediated organic synthetic reactions. RSC Advances, 2013, 3, 16885.	3.6	95
35	Phosphineâ€Catalyzed Annulations between Modified Allylic Derivatives and Polar Dienes and Substituent Effect on the Annulation Mode. Chinese Journal of Chemistry, 2013, 31, 1348-1351.	4.9	18
36	Phosphine-catalyzed formal vinylogous aldol reaction of γ-methyl allenoates with aldehydes: easy access to 1.3-dioxanes and dienols. Tetrahedron, 2013. 69. 10424-10430.	1.9	16

#	Article	IF	CITATIONS
37	Phosphine-catalyzed [3+2] annulation of α-substituted allenoates with ester-activated α,β-unsaturated imines: a novel variation of the Lu [3+2] cycloaddition reaction. Chemical Communications, 2013, 49, 2058.	4.1	65
38	Distinct reactivity of Morita–Baylis–Hillman acetates as a novel C2 component in amine-catalyzed [2 + 2] and [2 + 4] annulations. Chemical Communications, 2013, 49, 3543.	4.1	29
39	Highly Chemoselective Rauhut–Currier Reaction between Maleimides and Enones and Dual Phosphine-Mediated One-Pot Synthesis of Bicyclic and Polycyclic Skeletons. Journal of Organic Chemistry, 2013, 78, 10596-10604.	3.2	48
40	A New BINOL-Derived Chiral Bifunctional Phosphine Organocatalyst: Preparation and Application in Asymmetric (Aza)-Morita-Baylis-Hillman Reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1548-1554.	1.6	10
41	Phosphine-Triggered Tandem Annulation between Morita–Baylis–Hillman Carbonates and Dinucleophiles: Facile Syntheses of Oxazepanes, Thiazepanes, and Diazepanes. Organic Letters, 2012, 14, 6134-6137.	4.6	61
42	Phosphine-catalyzed [4 + 2] annulation and vinylogous addition reactions between 1,4-dien-3-ones and 1,1-dicyanoalkenes. Organic and Biomolecular Chemistry, 2012, 10, 773-781.	2.8	26
43	Phosphaneâ€Mediated Domino Synthesis of Tetrasubstituted Furans from Simple Terminal Activated Olefins. European Journal of Organic Chemistry, 2012, 2012, 6033-6041.	2.4	27
44	Gadolinium chelate with DO3A conjugated 2-(diphenylphosphoryl)-ethyldiphenylphosphonium cation as potential tumor-selective MRI contrast agent. Biomaterials, 2012, 33, 9225-9231.	11.4	18
45	Divergent Amine-Catalyzed [4 + 2] Annulation of Morita–Baylis–Hillman Allylic Acetates with Electron-Deficient Alkenes. Organic Letters, 2012, 14, 996-999.	4.6	40
46	Studies on Reactivity ofin situGenerated Allylic Phosphorus Ylides with Aldehydes. Chinese Journal of Organic Chemistry, 2012, 32, 1159.	1.3	11
47	Chemoselective phosphine-catalyzed cascade annulations between two different activated alkenes: highly diastereoselective syntheses of polysubstituted cyclohexanes and cyclopentenes. Chemical Communications, 2011, 47, 1045-1047.	4.1	32
48	Phosphine-Catalyzed [4 + 1] Annulation between α,β-Unsaturated Imines and Allylic Carbonates: Synthesis of 2-Pyrrolines. Journal of Organic Chemistry, 2011, 76, 2374-2378.	3.2	121
49	Phosphine-Catalyzed Cascade [3 + 2] Cyclizationâ^'Allylic Alkylation, [2 + 2 + 1] Annulation, and [3 + 2] Cyclization Reactions between Allylic Carbonates and Enones. Organic Letters, 2011, 13, 580-583.	4.6	87
50	PBu3-Mediated Vinylogous Wittig Reaction of α-Methyl Allenoates with Aldehydes and Mechanistic Investigations. Journal of Organic Chemistry, 2011, 76, 7528-7538.	3.2	33
51	Phosphine-mediated diverse reactivity of γ-substituted allenoates with aldehydes: syntheses of highly functionalized chromans and (E,E)-1,3-dienes. Tetrahedron, 2011, 67, 1053-1061.	1.9	47
52	A Highly Diastereoselective Tertiary Amineâ€Catalyzed Cascade Michael–Michael–Henry Reaction between Nitromethane, Activated Alkenes and α,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2010, 352, 97-102.	4.3	23
53	Wittig Olefination between Phosphine, Aldehyde, and Allylic Carbonate: A General Method for Stereoselective Synthesis of Trisubstituted 1,3-Dienes with Highly Variable Substituents. Organic Letters, 2010, 12, 976-979.	4.6	95
54	Stereoselective Synthesis of 1,2,3,4-Tetrasubstituted Dienes from Allenoates and Aldehydes: An Observation of Phosphine-Induced Chemoselectivity. Organic Letters, 2010, 12, 3556-3559.	4.6	49

#	Article	IF	CITATIONS
55	Phosphine-Mediated Stereoselective Reductive Cyclopropanation of α-Substituted Allenoates with Aromatic Aldehydes. Organic Letters, 2010, 12, 544-547.	4.6	56
56	å"e†¦å,ä,Žä,‹è"ç∫⁻é,é⁻ä,Žé†›çš"å应. Scientia Sinica Chimica, 2010, 40, 856-868.	0.4	15
57	Phosphaneâ€Catalyzed [3+2] Annulation of Allenoates with Aldehydes: A Simple and Efficient Synthesis of 2â€Alkylidenetetrahydrofurans. Chemistry - A European Journal, 2009, 15, 8698-8702.	3.3	113
58	Phosphine-Mediated Olefination between Aldehydes and Allenes: An Efficient Synthesis of Trisubstituted 1,3-Dienes with High <i>E</i> -Selectivity. Organic Letters, 2009, 11, 3498-3501.	4.6	58
59	Nucleophilic phosphine-catalyzed [3+2] cycloaddition of allenes with N-(thio)phosphoryl imines and acidic methanolysis of adducts N-(thio)phosphoryl 3-pyrrolines: a facile synthesis of free amine 3-pyrrolines. Tetrahedron, 2008, 64, 9471-9479.	1.9	70
60	Photochromism and light-induced radical behaviours of biindenylidenedione derivatives in solid state. Journal of Molecular Structure, 2008, 874, 28-33.	3.6	7
61	Linker Effects on Biological Properties of 111In-Labeled DTPA Conjugates of a Cyclic RGDfK Dimer. Bioconjugate Chemistry, 2008, 19, 201-210.	3.6	47
62	An Unexpected Phosphine-Mediated Olefination of Salicylaldehydes with α-Methyl Allenoate. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 1518-1525.	1.6	19
63	⁶⁴ Cu-Labeled Triphenylphosphonium and Triphenylarsonium Cations as Highly Tumor-Selective Imaging Agents. Journal of Medicinal Chemistry, 2007, 50, 5057-5069.	6.4	61
64	Impact of Bidentate Chelators on Lipophilicity, Stability, and Biodistribution Characteristics of Cationic99mTc-Nitrido Complexes. Bioconjugate Chemistry, 2007, 18, 929-936.	3.6	33
65	1,3,5â€Triazaâ€7â€phosphaadamantane (PTA): A Practical and Versatile Nucleophilic Phosphine Organocatalyst. Advanced Synthesis and Catalysis, 2007, 349, 2007-2017.	4.3	70
66	The Azaâ€Morita–Baylis–Hillman Reaction of <i>N</i> â€Thiophosphoryl Imines Catalyzed by 1,3,5â€Triazaâ€7â€phosphaadamantane (PTA) –– Convenient Synthesis of αâ€Methyleneâ€Î²â€Amino Ketor Derivatives. European Journal of Organic Chemistry, 2007, 2007, 4487-4491.	n e.ø r Acid	27
67	Impact of PKM Linkers on Biodistribution Characteristics of the99mTc-Labeled Cyclic RGDfK Dimer. Bioconjugate Chemistry, 2006, 17, 1499-1507.	3.6	34
68	A Novel Ternary Ligand System Useful for Preparation of Cationic99mTc-Diazenido Complexes and99mTc-Labeling of Small Biomolecules. Bioconjugate Chemistry, 2006, 17, 473-484.	3.6	28
69	Evaluation of novel cationic 99mTc-nitrido complexes as radiopharmaceuticals for heart imaging: improving liver clearance with crown ether groups. Nuclear Medicine and Biology, 2006, 33, 419-432.	0.6	42
70	Evaluation of novel cationic 99mTc(I)–tricarbonyl complexes as potential radiotracers for myocardial perfusion imaging. Nuclear Medicine and Biology, 2006, 33, 1045-1053.	0.6	37
71	The First Air-Stable and Efficient Nucleophilic Trialkylphosphine Organocatalyst for the Baylis–Hillman Reaction. Advanced Synthesis and Catalysis, 2006, 348, 413-417.	4.3	42
72	Crystal and molecular structure of a steroidal spirocyclic lactone, C29H34O4. Journal of Chemical Crystallography, 2003, 33, 897-902.	1.1	0

#	Article	IF	CITATIONS
73	Regio- and Stereoselective Ruthenium-Catalyzed Hydrovinylation of 1,3-Dienes: Application to the Generation of a 20(S) Steroidal Side Chain ChemInform, 2003, 34, no.	0.0	0
74	Synthesis, Characterization, and X-ray Crystal Structure of In(DOTA-AA) (AA =p-Aminoanilide):Â A Model for111In-Labeled DOTA-Biomolecule Conjugates. Inorganic Chemistry, 2003, 42, 8831-8837.	4.0	44
75	Regio- and Stereoselective Ruthenium-Catalyzed Hydrovinylation of 1,3-Dienes:  Application to the Generation of a 20(S) Steroidal Side Chain. Organic Letters, 2003, 5, 1567-1569.	4.6	42
76	Conjugate Addition of Alcohols to Acrylic Compounds Catalyzed by a Bifunctional Rutheniumâ^'Acetamido Complex. Organometallics, 2003, 22, 3031-3033.	2.3	39
77	Synthesis and Reactivity of Bicyclic Phosphoric (and Thiophosphoric) Amides. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1689-1692.	1.6	2
78	Hydrovinylation of Alkenes Catalyzed by the Rutheniumâ^'Hydride Complex Formed in Situ from (PCy3)2(CO)RuHCl and HBF4·OEt2. Organometallics, 2001, 20, 802-804.	2.3	51
79	Transfer Hydrogenation of Carbonyl Compounds Catalyzed by a Rutheniumâ^'Acetamido Complex:Â Evidence for a Stepwise Hydrogen Transfer Mechanism. Organometallics, 2001, 20, 3641-3643.	2.3	55
80	Acid-Promoted Homogeneous Hydrogenation of Alkenes Catalyzed by the Rutheniumâ^'Hydride Complex (PCy3)2(CO)(Cl)RuH:  Evidence for the Formation of 14-Electron Species from the Selective Entrapment of the Phosphine Ligand. Organometallics, 2000, 19, 2909-2915.	2.3	53
81	Bicyclic Organophosphorus Amides. Nucleophilic Cleavage of 1-Oxo-2,3-benzo-10-phenyl-4,7,10-triaza-1λ5-phosphabicyclo[5.3.0]decane and its p-Anisyl Analogues. Journal of Chemical Research Synopses, 1999, , 656-657.	0.3	3