Michael Beetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6170573/publications.pdf

Version: 2024-02-01

245 papers 9,592 citations

218677 26 h-index 149698 56 g-index

251 all docs

251 docs citations

251 times ranked

5935 citing authors

#	Article	IF	CITATIONS
1	Action Selection and Execution in Everyday Activities: A Cognitive Robotics and Situation Model Perspective. Topics in Cognitive Science, 2022, 14, 344-362.	1.9	4
2	Kineverse: A Symbolic Articulation Model Framework for Model-Agnostic Mobile Manipulation. IEEE Robotics and Automation Letters, 2022, 7, 3372-3379.	5.1	6
3	Improving Object Pose Estimation by Fusion With a Multimodal Prior – Utilizing Uncertainty-Based CNN Pipelines for Robotics. IEEE Robotics and Automation Letters, 2022, 7, 2282-2288.	5.1	3
4	Knowledge-Enabled Generation of Semantically Annotated Image Sequences of Manipulation Activities from VR Demonstrations. Lecture Notes in Computer Science, 2021, , 130-143.	1.3	0
5	Robot Program Parameter Inference via Differentiable Shadow Program Inversion. , 2021, , .		3
6	The Robot Household Marathon Experiment. , 2021, , .		15
7	Automated acquisition of structured, semantic models of manipulation activities from human VR demonstration. , $2021, , .$		5
8	Cutting Events., 2021,,.		2
9	Semantic Digital Twins for Retail Logistics. , 2021, , 129-153.		5
10	Imagination-enabled Robot Perception. , 2021, , .		3
10	Imagination-enabled Robot Perception., 2021,,. Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents 1. Frontiers in Artificial Intelligence and Applications, 2021,,.	0.3	3
	Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents1.	0.3	
11	Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents1. Frontiers in Artificial Intelligence and Applications, 2021, , . SkillMaN â€" A skill-based robotic manipulation framework based on perception and reasoning.		3
11 12	Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents1. Frontiers in Artificial Intelligence and Applications, 2021, , . SkillMaN — A skill-based robotic manipulation framework based on perception and reasoning. Robotics and Autonomous Systems, 2020, 134, 103653. Manipulation Planning and Control for Shelf Replenishment. IEEE Robotics and Automation Letters,	5.1	13
11 12 13	Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents1. Frontiers in Artificial Intelligence and Applications, 2021, , . SkillMaN — A skill-based robotic manipulation framework based on perception and reasoning. Robotics and Autonomous Systems, 2020, 134, 103653. Manipulation Planning and Control for Shelf Replenishment. IEEE Robotics and Automation Letters, 2020, 5, 1595-1601. An Interactive Strategic Mission Management System for Intuitive Human-Robot Cooperation.	5.1 5.1	3 13 20
11 12 13	Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents1. Frontiers in Artificial Intelligence and Applications, 2021, , . SkillMaN — A skill-based robotic manipulation framework based on perception and reasoning. Robotics and Autonomous Systems, 2020, 134, 103653. Manipulation Planning and Control for Shelf Replenishment. IEEE Robotics and Automation Letters, 2020, 5, 1595-1601. An Interactive Strategic Mission Management System for Intuitive Human-Robot Cooperation. Intelligent Systems, Control and Automation: Science and Engineering, 2020, , 183-193. Information System for Storage, Management, and Usage for Embodied Intelligent Systems. , 2020, ,	5.1 5.1	3 13 20 1
11 12 13 14	Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents1. Frontiers in Artificial Intelligence and Applications, 2021, , . SkillMaN — A skill-based robotic manipulation framework based on perception and reasoning. Robotics and Autonomous Systems, 2020, 134, 103653. Manipulation Planning and Control for Shelf Replenishment. IEEE Robotics and Automation Letters, 2020, 5, 1595-1601. An Interactive Strategic Mission Management System for Intuitive Human-Robot Cooperation. Intelligent Systems, Control and Automation: Science and Engineering, 2020, , 183-193. Information System for Storage, Management, and Usage for Embodied Intelligent Systems. , 2020, 135-159. An Ontology for Failure Interpretation in Automated Planning and Execution. Advances in Intelligent	5.1 5.1 0.5	3 13 20 1

#	Article	IF	CITATIONS
19	Learning Motion Parameterizations of Mobile Pick and Place Actions from Observing Humans in Virtual Environments. , 2020, , .		3
20	Cut & Components based on simple language instructions. International Journal of Robotics Research, 2019, 38, 1179-1207.	8.5	4
21	A Framework for Self-Training Perceptual Agents in Simulated Photorealistic Environments. , 2019, , .		9
22	Self-Specialization of General Robot Plans Based on Experience. IEEE Robotics and Automation Letters, 2019, 4, 3766-3773.	5.1	7
23	Automated Models of Human Everyday Activity based on Game and Virtual Reality Technology. , 2019, , .		10
24	Autonomous Parallelization of Resource-Aware Robotic Task Nodes. IEEE Robotics and Automation Letters, 2019, 4, 2599-2606.	5.1	5
25	Special Issue on Smart Production. KI - Kunstliche Intelligenz, 2019, 33, 111-116.	3.2	1
26	From Research to Market: Building the Perception Systems for the Next Generation of Industrial Robots. KI - Kunstliche Intelligenz, 2019, 33, 193-196.	3.2	1
27	Query-based integration of heterogeneous knowledge bases for search and rescue tasks. Robotics and Autonomous Systems, 2019, 117, 80-91.	5.1	3
28	Episodic Memories for Safety-Aware Robots. KI - Kunstliche Intelligenz, 2019, 33, 123-130.	3.2	3
29	Perception-Guided Mobile Manipulation Robots for Automation of Warehouse Logistics. KI - Kunstliche Intelligenz, 2019, 33, 189-192.	3.2	2
30	Executing Underspecified Actions in Real World Based on Online Projection. , 2019, , .		6
31	Continuous Modeling of Affordances in a Symbolic Knowledge Base. , 2019, , .		6
32	Automatic Configuration of the Structure and Parameterization of Perception Pipelines. , 2019, , .		2
33	A review and comparison of ontology-based approaches to robot autonomy. Knowledge Engineering Review, 2019, 34, .	2.6	58
34	Cognition-enabled robotic wiping: Representation, planning, execution, and interpretation. Robotics and Autonomous Systems, 2019, 114, 199-216.	5.1	7
35	Dempster-Shafer theoretic resolution of referential ambiguity. Autonomous Robots, 2019, 43, 389-414.	4.8	8
36	Distributed stereo visionâ€based 6D localization and mapping for multiâ€robot teams. Journal of Field Robotics, 2019, 36, 305-332.	6.0	27

#	Article	IF	Citations
37	Purposive learning: Robot reasoning about the meanings of human activities. Science Robotics, 2019, 4,	17.6	21
38	The Exchange of Knowledge Using Cloud Robotics. IEEE Robotics and Automation Letters, 2018, 3, 1072-1079.	5.1	32
39	Multidimensional Time-Series Shapelets Reliably Detect and Classify Contact Events in Force Measurements of Wiping Actions. IEEE Robotics and Automation Letters, 2018, 3, 320-327.	5.1	8
40	Cloud-Based Probabilistic Knowledge Services for Instruction Interpretation. Springer Proceedings in Advanced Robotics, 2018, , 649-664.	1.3	5
41	Heterogeneous Ontologies and Hybrid Reasoning for Service Robotics: The EASE Framework. Advances in Intelligent Systems and Computing, 2018, , 417-428.	0.6	9
42	Cognition-enabled Framework for Mixed Human-Robot Rescue Teams. , 2018, , .		8
43	Variations on a Theme: "lt's a Poor Sort of Memory that Only Works Backwards― , 2018, , .		5
44	KnowRobSIM $\hat{a}\mbox{\'e}"$ Game Engine-Enabled Knowledge Processing Towards Cognition-Enabled Robot Control. , 2018, , .		10
45	Assembly Planning in Cluttered Environments Through Heterogeneous Reasoning. Lecture Notes in Computer Science, 2018, , 201-214.	1.3	0
46	The Exchange of Knowledge Using Cloud Robotics. , 2018, , .		1
47	Know Rob 2.0 $\hat{a} \in \H$ A 2nd Generation Knowledge Processing Framework for Cognition-Enabled Robotic Agents. , 2018, , .		97
48	Acquiring Knowledge of Object Arrangements from Human Examples for Household Robots. Lecture Notes in Computer Science, 2018, , 131-138.	1.3	4
49	Configuration of Perception Systems via Planning Over Factor Graphs. , 2018, , .		2
50	Envisioning the qualitative effects of robot manipulation actions using simulation-based projections. Artificial Intelligence, 2017, 247, 352-380.	5.8	38
51	Representations for robot knowledge in the KnowRob framework. Artificial Intelligence, 2017, 247, 151-169.	5.8	114
52	Transferring skills to humanoid robots by extracting semantic representations from observations of human activities. Artificial Intelligence, 2017, 247, 95-118.	5.8	87
53	Added Value of Gaze-Exploiting Semantic Representation to Allow Robots Inferring Human Behaviors. ACM Transactions on Interactive Intelligent Systems, 2017, 7, 1-30.	3.7	11
54	A cloud service for robotic mental simulations. , 2017, , .		8

#	Article	IF	Citations
55	Guidelines for improving task-based natural language understanding in human-robot rescue teams. , 2017, , .		1
56	Programming robotic agents with action descriptions. , 2017, , .		9
57	What no robot has seen before — Probabilistic interpretation of natural-language object descriptions. , 2017, , .		6
58	Instruction completion through instance-based learning and semantic analogical reasoning. , 2017, , .		8
59	Open robotics research using web-based knowledge services. , 2016, , .		11
60	Inferring the effects of wiping motions based on haptic perception. , 2016, , .		8
61	Action recognition and interpretation from virtual demonstrations. , 2016, , .		9
62	Learning models for constraint-based motion parameterization from interactive physics-based simulation. , 2016, , .		13
63	Knowledge-enabled parameterization of whole-body control strategies for compliant service robots. Autonomous Robots, 2016, 40, 519-536.	4.8	37
64	Al Reasoning Methods for Robotics. Springer Handbooks, 2016, , 329-356.	0.6	10
65	Scaling perception towards autonomous object manipulation $\hat{a} \in \H$ in knowledge lies the power. , 2016, , .		6
66	Perception for Everyday Human Robot Interaction. KI - Kunstliche Intelligenz, 2016, 30, 21-27.	3.2	5
67	Cognition-Enabled Robot Control for Mixed Human-Robot Rescue Teams. Advances in Intelligent Systems and Computing, 2016, , 1357-1369.	0.6	7
68	Towards robots conducting chemical experiments. , 2015, , .		17
69	Classifying compliant manipulation tasks for automated planning in robotics. , 2015, , .		22
70	Learning action failure models from interactive physics-based simulations. , 2015, , .		5
71	Prospection in Cognition: The Case for Joint Episodic-Procedural Memory in Cognitive Robotics. Frontiers in Robotics and Al, 2015, 2, .	3.2	23
72	RoboEarth Semantic Mapping: A Cloud Enabled Knowledge-Based Approach. IEEE Transactions on Automation Science and Engineering, 2015, 12, 432-443.	5.2	84

#	Article	lF	Citations
73	Robotic agents capable of natural and safe physical interaction with human co-workers., 2015,,.		25
74	Robot action plans that form and maintain expectations., 2015,,.		9
75	Multi-robot 6D graph SLAM connecting decoupled local reference filters. , 2015, , .		31
76	An overview of the KnowRob project. , 2015, , .		0
77	Interactive Segmentation of Textured and Textureless Objects. Studies in Systems, Decision and Control, 2015, , 237-262.	1.0	2
78	Open-EASE: A Cloud-Based Knowledge Service for Autonomous Learning. KI - Kunstliche Intelligenz, 2015, 29, 407-411.	3.2	11
79	Rendering semantically-annotated experiment videos out of robot memories. , 2015, , .		0
80	Model-Free Detection, Encoding, Retrieval, and Visualization of Human Poses From Kinect Data. IEEE/ASME Transactions on Mechatronics, 2015, 20, 865-875.	5.8	14
81	Understanding the intention of human activities through semantic perception: observation, understanding and execution on a humanoid robot. Advanced Robotics, 2015, 29, 345-362.	1.8	37
82	RoboSherlock: Unstructured information processing for robot perception. , 2015, , .		44
83	Open-EASE. , 2015, , .		37
84	Robots, Pancakes, and Computer Games., 2015,,.		6
85	Planning Everyday Manipulation Tasks – Prediction-based Transformation of Structured Activity Descriptions. , 2015, , 63-83.		1
86	PR2 looking at things & amp; \pm x2014; Ensemble learning for unstructured information processing with Markov logic networks., 2014,,.		19
87	Controlled Natural Languages for language generation in artificial cognition. , 2014, , .		6
88	Bootstrapping humanoid robot skills by extracting semantic representations of human-like activities from virtual reality. , 2014, , .		11
89	Automatic segmentation and recognition of human activities from observation based on semantic reasoning. , 2014, , .		21
90	Part-Based Geometric Categorization and Object Reconstruction in Cluttered Table-Top Scenes. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 76, 35-56.	3.4	8

#	Article	IF	CITATIONS
91	Inpainting of Missing Values in the Kinect Sensor's Depth Maps Based on Background Estimates. IEEE Sensors Journal, 2014, 14, 1107-1116.	4.7	18
92	Learning task outcome prediction for robot control from interactive environments. , 2014, , .		6
93	Tracking-based interactive segmentation of textureless objects. , 2013, , .		20
94	Personalized robotic service using N-gram affective Event model. , 2013, , .		1
95	Representation and Exchange of Knowledge About Actions, Objects, and Environments in the RoboEarth Framework. IEEE Transactions on Automation Science and Engineering, 2013, 10, 643-651.	5.2	79
96	Robot recommender system using affection-based episode ontology for personalization. , 2013, , .		3
97	Ensembles of strong learners for multi-cue classification. Pattern Recognition Letters, 2013, 34, 754-761.	4.2	9
98	Acquiring task models for imitation learning through games with a purpose., 2013,,.		8
99	Interactive environment exploration in clutter., 2013,,.		18
100	Enhancing human action recognition through spatio-temporal feature learning and semantic rules. , 2013, , .		13
101	Constraint-based movement representation grounded in geometric features. , 2013, , .		19
102	KnowRob: A knowledge processing infrastructure for cognition-enabled robots. International Journal of Robotics Research, 2013, 32, 566-590.	8.5	283
103	Decomposing CAD models of objects of daily use and reasoning about their functional parts. , 2013, , .		19
104	Fast temporal projection using accurate physics-based geometric reasoning., 2013,,.		23
105	Automated alignment of specifications of everyday manipulation tasks. , 2013, , .		4
106	Learning probability distributions over partially-ordered human everyday activities. , 2013, , .		10
107	Fractal Approximate Nearest Neighbour Search in Log-Log Time. , 2013, , .		1
108	Exchanging Action-Related Information among Autonomous Robots. Advances in Intelligent Systems and Computing, 2013, , 467-476.	0.6	1

#	Article	IF	CITATIONS
109	Exchanging Action-Related Information among Autonomous Robots. Studies in Computational Intelligence, 2013, , 127-136.	0.9	1
110	Improving robot manipulation through fingertip perception. , 2012, , .		43
111	Searching objects in large-scale indoor environments: A decision-theoretic approach. , 2012, , .		29
112	Semantic Object Maps for robotic housework - representation, acquisition and use. , 2012, , .		53
113	A generalized framework for opening doors and drawers in kitchen environments. , 2012, , .		51
114	The RoboEarth language: Representing and exchanging knowledge about actions, objects, and environments. , 2012 , , .		67
115	A unified representation for reasoning about robot actions, processes, and their effects on objects. , 2012, , .		14
116	Learning organizational principles in human environments. , 2012, , .		14
117	Everything robots always wanted to know about housework (but were afraid to ask). , 2012, , .		32
118	Movement-aware action control & amp; $\#x2014$; Integrating symbolic and control-theoretic action execution., 2012, , .		14
119	Robots that validate learned perceptual models. , 2012, , .		5
120	Real-time compression of point cloud streams. , 2012, , .		224
121	Cognition-Enabled Autonomous Robot Control for the Realization of Home Chore Task Intelligence. Proceedings of the IEEE, 2012, 100, 2454-2471.	21.3	48
122	A Self-Training Approach for Visual Tracking and Recognition of Complex Human Activity Patterns. International Journal of Computer Vision, 2012, 99, 166-189.	15.6	21
123	Grounding the Interaction: Anchoring Situated Discourse in Everyday Human-Robot Interaction. International Journal of Social Robotics, 2012, 4, 181-199.	4.6	63
124	Object Categorization in Clutter Using Additive Features and Hashing of Part-Graph Descriptors. Lecture Notes in Computer Science, 2012, , 17-33.	1.3	6
125	Spatio-Temporal Multifeature for Facial Analysis. Lecture Notes in Computer Science, 2012, , 199-209.	1.3	0
126	Contracting curve density algorithm for applications in personal robotics. , 2011, , .		0

#	Article	IF	CITATIONS
127	Robotic roommates making pancakes., 2011,,.		143
128	Artificial Cognition in Production Systems. IEEE Transactions on Automation Science and Engineering, 2011, 8, 148-174.	5.2	94
129	What are you talking about? Grounding dialogue in a perspective-aware robotic architecture. , 2011, , .		8
130	Spatio-temporal Facial Features for HRI Scenarios., 2011,,.		1
131	Web-Enabled Robots. IEEE Robotics and Automation Magazine, 2011, 18, 58-68.	2.0	77
132	Furniture Models Learned from the WWW. IEEE Robotics and Automation Magazine, 2011, 18, 22-32.	2.0	25
133	A Special Issue Toward a WWW for Robots [From the Guest Editors]. IEEE Robotics and Automation Magazine, 2011, 18, 20-20.	2.0	3
134	RoboEarth. IEEE Robotics and Automation Magazine, 2011, 18, 69-82.	2.0	381
135	Robot challenges: Toward development of verification and synthesis techniques [from the Guest Editors]. IEEE Robotics and Automation Magazine, 2011, 18, 22-23.	2.0	12
136	How Humans Optimize Their Interaction with the Environment: The Impact ofÂAction Context onÂHuman Perception. International Journal of Social Robotics, 2011, 3, 223-231.	4.6	5
137	Parameterizing actions to have the appropriate effects., 2011,,.		23
138	Fast adaptation for effect-aware pushing. , 2011, , .		18
139	Multimodal autonomous tool analyses and appropriate application. , 2011, , .		6
140	Transparent object detection and reconstruction on a mobile platform. , $2011, \ldots$		51
141	How-models of human reaching movements in the context of everyday manipulation activities. , $2011, , .$		9
142	Combined 2D–3D categorization and classification for multimodal perception systems. International Journal of Robotics Research, 2011, 30, 1378-1402.	8.5	83
143	Logic programming with simulation-based temporal projection for everyday robot object manipulation. , $2011,\ldots$		15
144	Towards semantic robot description languages. , 2011, , .		75

#	Article	IF	CITATIONS
145	Autonomous semantic mapping for robots performing everyday manipulation tasks in kitchen environments. , 2011 , , .		44
146	Autonomous semantic mapping for robots performing everyday manipulation tasks in kitchen environments. , 2011 , , .		2
147	Bayesian Logic Networks and the Search for Samples with Backward Simulation and Abstract Constraint Learning. Lecture Notes in Computer Science, 2011, , 144-156.	1.3	1
148	Generality and legibility in mobile manipulation. Autonomous Robots, 2010, 28, 21-44.	4.8	43
149	Knowledge Processing for Cognitive Robots. KI - Kunstliche Intelligenz, 2010, 24, 233-240.	3.2	13
150	Special Issue on Cognition for Technical Systems. KI - Kunstliche Intelligenz, 2010, 24, 283-286.	3.2	3
151	CoTeSysâ€"Cognition for Technical Systems. KI - Kunstliche Intelligenz, 2010, 24, 323-327.	3.2	6
152	Learning from Humansâ€"Computational Models ofÂCognition-Enabled Control of Everyday Activity. KI - Kunstliche Intelligenz, 2010, 24, 311-318.	3.2	0
153	Towards performing everyday manipulation activities. Robotics and Autonomous Systems, 2010, 58, 1085-1095.	5.1	32
154	Towards automated models of activities of daily life. Technology and Disability, 2010, 22, 27-40.	0.6	28
155	Combining perception and knowledge processing for everyday manipulation. , 2010, , .		26
156	Perception and probabilistic anchoring for dynamic world state logging. , 2010, , .		17
157	Understanding and executing instructions for everyday manipulation tasks from the World Wide Web. , 2010, , .		83
158	Priming transformational planning with observations of human activities. , 2010, , .		7
159	CRAM & Cognitive Robot Abstract Machine for everyday manipulation in human environments. , 2010, , .		115
160	Prediction of action outcomes using an object model. , 2010, , .		10
161	Becoming action-aware through reasoning about logged plan execution traces. , 2010, , .		11
162	ORO, a knowledge management platform for cognitive architectures in robotics. , 2010, , .		91

#	Article	IF	Citations
163	Hierarchical object geometric categorization and appearance classification for mobile manipulation. , 2010, , .		45
164	General 3D modelling of novel objects from a single view. , 2010, , .		81
165	Robotic grasping of unmodeled objects using time-of-flight range data and finger torque information. , $2010, , .$		22
166	KNOWROB-MAP - knowledge-linked semantic object maps. , 2010, , .		54
167	Importance Sampling as One Solution to the Data Association Problem in Multi-target Tracking. Communications in Computer and Information Science, 2010, , 309-325.	0.5	1
168	Putting People's Common Sense into Knowledge Bases of Household Robots. Lecture Notes in Computer Science, 2010, , 151-159.	1.3	16
169	Uncertainty Analysis for Large-Scale Industrial Radial Compressors. , 2010, , .		5
170	Soft Evidential Update via Markov Chain Monte Carlo Inference. Lecture Notes in Computer Science, 2010, , 280-290.	1.3	5
171	Tracking humans interacting with the environment using efficient hierarchical sampling and layered observation models. , 2009, , .		23
172	Probabilistic categorization of kitchen objects in table settings with a composite sensor., 2009,,.		33
173	Leaving Flatland: Toward real-time 3D navigation. , 2009, , .		26
174	Grasp motion planning for box opening task by multi-fingered hands and arms. , 2009, , .		1
175	3D model selection from an internet database for robotic vision. , 2009, , .		29
176	Equipping robot control programs with first-order probabilistic reasoning capabilities. , 2009, , .		27
177	Model-based and learned semantic object labeling in 3D point cloud maps of kitchen environments. , 2009, , .		73
178	Integration of perception, global planning and local planning in the manufacturing domain., 2009,,.		2
179	Action-related place-based mobile manipulation. , 2009, , .		17
180	Optimization of simulated production process performance using machine learning., 2009,,.		4

#	Article	IF	CITATIONS
181	KNOWROB & amp; #x2014; knowledge processing for autonomous personal robots., 2009,,.		186
182	Human Action Recognition Using Global Point Feature Histograms and Action Shapes. Advanced Robotics, 2009, 23, 1873-1908.	1.8	12
183	The TUM Kitchen Data Set of everyday manipulation activities for motion tracking and action recognition. , 2009, , .		136
184	Multi-feature fusion in advanced robotics applications. , 2009, , .		2
185	Leaving Flatland: Efficient realâ€time threeâ€dimensional perception and motion planning. Journal of Field Robotics, 2009, 26, 841-862.	6.0	50
186	Compact models of human reaching motions for robotic control in everyday manipulation tasks. , 2009, , .		7
187	Fast Point Feature Histograms (FPFH) for 3D registration. , 2009, , .		2,097
188	Detecting and segmenting objects for mobile manipulation. , 2009, , .		60
189	Model Based Analysis of Face Images for Facial Feature Extraction. Lecture Notes in Computer Science, 2009, , 99-106.	1.3	8
190	Real-time perception-guided motion planning for a personal robot. , 2009, , .		63
191	Combining analysis, imitation, and experience-based learning to acquire a concept of reachability in robot mobile manipulation. , 2009, , .		5
192	Learning and performing place-based mobile manipulation. , 2009, , .		10
193	Fast geometric point labeling using conditional random fields. , 2009, , .		50
194	Compact models of motor primitive variations for predictable reaching and obstacle avoidance. , 2009, , .		23
195	Partial view modeling and validation in 3D laser scans for grasping. , 2009, , .		11
196	Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments. , 2009, , .		126
197	Perception for mobile manipulation and grasping using active stereo. , 2009, , .		38
198	Obstacle avoidance in a pick-and-place task. , 2009, , .		2

#	Article	IF	Citations
199	Image normalization for face recognition using 3D model., 2009,,.		О
200	Real-time CAD model matching for mobile manipulation and grasping. , 2009, , .		53
201	A Model Based Approach for Expressions Invariant Face Recognition. Lecture Notes in Computer Science, 2009, , 289-298.	1.3	15
202	Incremental Unsupervised Time Series Analysis Using Merge Growing Neural Gas. Lecture Notes in Computer Science, 2009, , 10-18.	1.3	14
203	How Humans Optimize Their Interaction with the Environment: The Impact of Action Context on Human Perception. Communications in Computer and Information Science, 2009, , 162-172.	0.5	3
204	Face Recognition Using Wireframe Model Across Facial Expressions. Lecture Notes in Computer Science, 2009, , 122-129.	1.3	1
205	Mutually Augmented Cognition. Communications in Computer and Information Science, 2009, , 152-161.	0.5	0
206	Facial Expressions Recognition from Image Sequences. Lecture Notes in Computer Science, 2009, , 315-323.	1.3	0
207	EYEWATCHME—3D Hand and object tracking for inside out activity analysis., 2009,,.		0
208	Combining declarative, procedural, and predictive knowledge to generate, execute, and optimize robot plans. Robotics and Autonomous Systems, 2008, 56, 967-979.	5.1	8
209	Robots in the kitchen: Exploiting ubiquitous sensing and actuation. Robotics and Autonomous Systems, 2008, 56, 844-856.	5.1	48
210	Towards 3D Point cloud based object maps for household environments. Robotics and Autonomous Systems, 2008, 56, 927-941.	5.1	788
211	Shape invariant recognition of segmented human face images using eigenfaces. , 2008, , .		2
212	Subsequent actions influence motor control parameters of a current grasping action. , 2008, , .		14
213	Learning informative point classes for the acquisition of object model maps. , 2008, , .		143
214	Positioning mobile manipulators to perform constrained linear trajectories. , 2008, , .		38
215	Action recognition in intelligent environments using point cloud features extracted from silhouette sequences., 2008,,.		5
216	The Assistive Kitchen & amp; #x2014; A demonstration scenario for cognitive technical systems., 2008,,.		34

#	Article	IF	Citations
217	Aligning point cloud views using persistent feature histograms. , 2008, , .		582
218	Functional object mapping of kitchen environments. , 2008, , .		16
219	Cognition, control and learning for everyday manipulation tasks in human environments. , 2008, , .		1
220	3D-based monocular SLAM for mobile agents navigating in indoor environments. , 2008, , .		1
221	Accurate Human Motion Capture Using an Ergonomics-Based Anthropometric Human Model. Lecture Notes in Computer Science, 2008, , 248-258.	1.3	23
222	GrAM: Reasoning with Grounded Action Models by Combining Knowledge Representation and Data Mining. , 2008, , 47-62.		1
223	Leaving Flatland: Realtime 3D Stereo Semantic Reconstruction. Lecture Notes in Computer Science, 2008, , 921-932.	1.3	6
224	Towards 3D object maps for autonomous household robots. , 2007, , .		28
225	Seamless Execution of Action Sequences. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	2
226	Context-aware kitchen utilities. , 2007, , .		26
227	Visual tracking system for water surface moving targets. , 2007, , .		1
228	Sensing Technologies and the Player-Middleware for Context-Awareness in Kitchen Environments. , 2007, , .		24
229	Extending Markov Logic to Model Probability Distributions in Relational Domains. Lecture Notes in Computer Science, 2007, , 129-143.	1.3	12
230	Camera-based observation of football games for analyzing multi-agent activities. , 2006, , .		32
231	Action awareness. , 2006, , .		6
232	Computerized Real-Time Analysis of Football Games. IEEE Pervasive Computing, 2005, 4, 33-39.	1.3	63
233	Towards Comprehensive Computational Models for Plan-Based Control of Autonomous Robots. Lecture Notes in Computer Science, 2005, , 514-527.	1.3	3
234	The AGILO Robot Soccer Teamâ€"Experience-Based Learning and Probabilistic Reasoning in Autonomous Robot Control. Autonomous Robots, 2004, 17, 55-77.	4.8	11

#	Article	IF	CITATIONS
235	The Contracting Curve Density Algorithm: Fitting Parametric Curve Models to Images Using Local Self-Adapting Separation Criteria. International Journal of Computer Vision, 2004, 59, 233-258.	15.6	30
236	Detection and Classification of Gateways for the Acquisition of Structured Robot Maps. Lecture Notes in Computer Science, 2004, , 553-561.	1.3	10
237	Cooperative probabilistic state estimation for vision-based autonomous mobile robots. IEEE Transactions on Automation Science and Engineering, 2002, 18, 670-684.	2.3	82
238	Learning action models for the improved execution of navigation plans. Robotics and Autonomous Systems, 2002, 38, 137-148.	5.1	12
239	AGILO RoboCuppers 2001: Utility- and Plan-Based Action Selection Based on Probabilistically Estimated Game Situations. Lecture Notes in Computer Science, 2002, , 611-615.	1.3	1
240	Structured Reactive Controllers. Autonomous Agents and Multi-Agent Systems, 2001, 4, 25-55.	2.1	19
241	Learning structured reactive navigation plans from executing MDP navigation policies., 2001,,.		2
242	Integrating active localization into high-level robot control systems. Robotics and Autonomous Systems, 1998, 23, 205-220.	5.1	16
243	Structured reactive communication plans—. Lecture Notes in Computer Science, 1998, , 177-188.	1.3	2
244	3D Face Modeling for Multi-Feature Extraction for Intelligent Systems. , 0, , 1145-1161.		1
245	3D Face Modeling for Multi-Feature Extraction for Intelligent Systems. , 0, , 73-89.		0