David R Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6169965/publications.pdf

Version: 2024-02-01

623734 642732 32 588 14 23 h-index citations g-index papers 34 34 34 625 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Hero Turned Villain: Identification of Components of the Sex Pheromone of the Tomato Bug, Nesidiocoris tenuis. Journal of Chemical Ecology, 2021, 47, 394-405.	1.8	2
2	Identification of Components of the Aggregation Pheromone of the Guam Strain of Coconut Rhinoceros Beetle, Oryctes rhinoceros, and Determination of Stereochemistry. Journal of Chemical Ecology, 2021, , 1.	1.8	3
3	Visual cues from different trap colours affect catches of Sahlbergella singularis (Hemiptera: Miridae) in sex pheromone traps in Cameroon cocoa plantations. Crop Protection, 2020, 127, 104959.	2.1	10
4	Effect of lure age and blend on sex pheromone trap catches of the mirid Sahlbergella singularis on cacao in Ghana. Crop Protection, 2020, 138, 105344.	2.1	1
5	Compounds Associated with Infection by the Root-Knot Nematode, <i>Meloidogyne javanica</i> , Influence the Ability of Infective Juveniles to Recognize Host Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 9100-9109.	5.2	12
6	Assessing the effect of insecticide-treated cattle on tsetse abundance and trypanosome transmission at the wildlife-livestock interface in Serengeti, Tanzania. PLoS Neglected Tropical Diseases, 2020, 14, e0008288.	3.0	9
7	Electrophysiological and Behavioral Responses of Adult Vine Weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae), to Host Plant Odors. Journal of Chemical Ecology, 2019, 45, 858-868.	1.8	9
8	Floral Odors and the Interaction between Pollinating Ceratopogonid Midges and Cacao. Journal of Chemical Ecology, 2019, 45, 869-878.	1.8	13
9	Factors affecting trap catch in pheromoneâ€based monitoring of saddle gall midge <i>Haplodiplosis marginata</i> (Diptera: Cecidomyiidae). Pest Management Science, 2018, 74, 406-412.	3.4	4
10	Optimal pheromone trap density for mass trapping cacao mirids. Entomologia Experimentalis Et Applicata, 2018, 166, 565-573.	1.4	8
11	Factors affecting field performance of pheromone traps for tobacco beetle, Lasioderma serricorne, and tobacco moth, Ephestia elutella. Journal of Pest Science, 2018, 91, 1381-1391.	3.7	17
12	Field evaluation of 3â€hydroxyâ€2â€hexanone and ethanol as attractants for the cerambycid beetle pest of vineyards, <i>Xylotrechus arvicola</i> . Pest Management Science, 2017, 73, 1598-1603.	3.4	6
13	Female Sex Pheromone of the Cone Moth, Dioryctria mendacella: Investigation of Synergism between Type I and Type II Pheromone Components. Journal of Chemical Ecology, 2017, 43, 433-442.	1.8	15
14	Design and deployment of semiochemical traps for capturing Anthonomus rubi Herbst (Coleoptera:) Tj ETQq0 0 Protection, 2017, 99, 1-9.	0 rgBT /O 2.1	verlock 10 Tf 5 9
15	Development and optimisation of a sex pheromone lure for monitoring populations of saddle gall midge, <i><scp>H</scp>aplodiplosis marginata</i> . Entomologia Experimentalis Et Applicata, 2017, 163, 82-92.	1.4	8
16	Chemical variation and insecticidal activity of Lippia javanica (Burm. f.) Spreng essential oil against Sitophilus zeamais Motschulsky. Industrial Crops and Products, 2017, 110, 75-82.	5.2	46
17	Field Evaluation of Potential Pheromone Lures for Lygus lineolaris (Hemiptera: Miridae) in the Mid-South. Journal of Insect Science, 2017, 17, .	1.5	10
18	Assessment of the effects of crop injury by blackcurrant leaf midge, Dasineura tetensi ($\tilde{RA}\frac{1}{4}$ bsaamen) (Cecidomyiidae) on yield and growth in commercial blackcurrant plantations. Crop Protection, 2016, 82, 51-59.	2.1	3

#	Article	IF	CITATIONS
19	Smoke, pheromone and kairomone olfactory receptor neurons in males and females of the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). Journal of Insect Physiology, 2015, 82, 46-55.	2.0	30
20	2â€(Undecyloxy)â€ethanol is a major component of the maleâ€produced aggregation pheromone of <i><i><scp>M</scp>onochamus sutor</i>< Entomologia Experimentalis Et Applicata, 2013, 149, 118-127.</i>	1.4	20
21	The Chemical Ecology of Cecidomyiid Midges (Diptera: Cecidomyiidae). Journal of Chemical Ecology, 2012, 38, 2-22.	1.8	56
22	Field evaluation of synthetic sex pheromone traps for the cocoa mirid <i>Sahlbergella singularis</i> (Hemiptera: Miridae). Pest Management Science, 2011, 67, 672-676.	3.4	26
23	Identification and Field Activity of a Male-Produced Aggregation Pheromone in the Pine Sawyer Beetle, Monochamus galloprovincialis. Journal of Chemical Ecology, 2010, 36, 570-583.	1.8	122
24	Exploitation of the sex pheromone of apple leaf midge Dasineura mali Kieffer (Diptera: Cecidomyiidae): Part 2. Use of sex pheromone traps for pest monitoring. Crop Protection, 2009, 28, 128-133.	2.1	13
25	Exploitation of the sex pheromone of apple leaf midge Dasineura mali Kieffer (Diptera: Cecidomyiidae) for pest monitoring: Part 1. Development of lure and trap. Crop Protection, 2009, 28, 139-144.	2.1	19
26	(S)-2-Acetoxy-5-Undecanone, Female Sex Pheromone of the Raspberry Cane Midge, Resseliella theobaldi (Barnes). Journal of Chemical Ecology, 2009, 35, 230-242.	1.8	16
27	Identification of Female-produced Sex Pheromone of the Honey Locust Gall Midge, Dasineura gleditchiae. Journal of Chemical Ecology, 2009, 35, 706-714.	1.8	10
28	Trapping <i>Dasinuera mali</i> (Diptera: Cecidomyiidae) in Apples. Journal of Economic Entomology, 2007, 100, 745-751.	1.8	19
29	Trapping Dasinuera mali (Diptera: Cecidomyiidae) in Apples. Journal of Economic Entomology, 2007, 100, 745-751.	1.8	19
30	Exploiting the aggregation pheromone of strawberry blossom weevil Anthonomus rubi Herbst (Coleoptera: Curculionidae): Part 1. Development of lure and trap. Crop Protection, 2006, 25, 144-154.	2.1	35
31	Exploiting the aggregation pheromone of strawberry blossom weevil Anthonomus rubi (Coleoptera:) Tj ETQq $1\ 1\ C$).784314 2.1	rg $_{15}^{ m BT}$ /Over $_{ m lo}$
32	Components of the Female Sex Pheromone of the Newly-Described Canola Flower Midge, Contarinia brassicola. Journal of Chemical Ecology, 0, , .	1.8	1