Shougo Higashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6169944/publications.pdf

Version: 2024-02-01

1040056 888059 1,119 19 9 17 citations g-index h-index papers 19 19 19 2069 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2019, 2, 590-602.	34.4	300
2	Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications, 2016, 7, 11801.	12.8	286
3	Composites of a Prussian Blue Analogue and Gelatinâ€Derived Nitrogenâ€Doped Carbonâ€Supported Porous Spinel Oxides as Electrocatalysts for a Zn–Air Battery. Advanced Energy Materials, 2016, 6, 1601052.	19.5	98
4	Enhanced Efficiency of Cd-Free Cu(In,Ga)(Se,S)2 Minimodule Via (Zn,Mg)O Second Buffer Layer and Alkali Metal Post-Treatment. IEEE Journal of Photovoltaics, 2017, 7, 1773-1780.	2.5	98
5	Cathode reaction mechanism of non-aqueous Li–O2 batteries with highly oxygen radical stable electrolyte solvent. Journal of Power Sources, 2013, 228, 47-56.	7.8	80
6	CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters. Nature Communications, 2020, 11, 1888.	12.8	76
7	Ether-functionalized ionic liquid electrolytes for lithium-air batteries. Journal of Power Sources, 2013, 243, 19-23.	7.8	74
8	Evaluation and analysis of Li-air battery using ether-functionalized ionic liquid. Journal of Power Sources, 2013, 240, 14-17.	7.8	49
9	Relationship Between OER Activity and Annealing Temperature of Sputter-Deposited Flat IrO2 Thin Films. Catalysis Letters, 2020, 150, 1976-1984.	2.6	19
10	Surface structures formed by individual adsorption and coadsorption of Mn and Bi on Cu(001), studied by LEED. Surface Science, 2006, 600, 591-597.	1.9	8
11	A dry chemical method for dispersing Ir nanoparticles in the pores of activated carbon and their X-ray absorption spectroscopy analysis. New Journal of Chemistry, 2019, 43, 17927-17931.	2.8	7
12	Insight for Designing Mass-Efficient Metal-Oxide-Supported Heterogeneous Catalyst from the Identification of the Catalytically Active Edge Sites Using Isotopically Labeled ¹³ CO and ¹⁸ O ₂ . ACS Catalysis, 2022, 12, 1977-1985.	11.2	7
13	Study of the pore size effect on the charge storage of hydrous RuO2 nanoparticles supported within the pores of activated carbon. Solid State Sciences, 2021, 111, 106472.	3.2	5
14	Equivalent ordered-mixed-surface-structures of p($4\tilde{A}$ –4)-p4gm formed on Cu(001) by coadsorptions of Bi+Mg and Sb+Mg. Surface Science, 2005, 588, 167-174.	1.9	4
15	Surface alloy model of p(2×2)Sb/Cu(001) from LEED I/V data. Surface Science, 2008, 602, 2473-2477.	1.9	4
16	Freestanding interconnected nanocluster textiles for efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 25061-25072.	10.3	3
17	Determination of a $(4\tilde{A}-4)$ structure formed on a Cu (001) surface by adsorption of calcium. Surface Science, 2009, 603, 659-663.	1.9	1
18	Growth of Ultra-Thin MnSi Films on Si(111) Surface: Monte Carlo Simulation. E-Journal of Surface Science and Nanotechnology, 2008, 6, 276-280.	0.4	0

ARTICLE IF CITATIONS

Zn-Air Batteries: Composites of a Prussian Blue Analogue and Gelatin-Derived Nitrogen-Doped
Carbon-Supported Porous Spinel Oxides as Electrocatalysts for a Zn-Air Battery (Adv. Energy Mater.) Tj ETQq1 1 0.784314 rgBT /Over