Ujwal Chaudhary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6169797/publications.pdf Version: 2024-02-01

Πυναι Chaudhary

#	Article	IF	CITATIONS
1	Brain–computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113, 767-791.	1.5	6,747
2	Closed-loop brain training: the science of neurofeedback. Nature Reviews Neuroscience, 2017, 18, 86-100.	10.2	814
3	Brain–machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 2013, 74, 100-108.	5.3	754
4	Brain-computer interfaces: communication and restoration of movement in paralysis. Journal of Physiology, 2007, 579, 621-636.	2.9	597
5	Brain–computer interfaces for communication and rehabilitation. Nature Reviews Neurology, 2016, 12, 513-525.	10.1	559
6	Breaking the silence: Brain?computer interfaces (BCI) for communication and motor control. Psychophysiology, 2006, 43, 517-532.	2.4	534
7	Brain–computer communication: Unlocking the locked in Psychological Bulletin, 2001, 127, 358-375.	6.1	531
8	An auditory brain–computer interface (BCI). Journal of Neuroscience Methods, 2008, 167, 43-50.	2.5	324
9	Brainâ€computer interfaces for postâ€stroke motor rehabilitation: a metaâ€analysis. Annals of Clinical and Translational Neurology, 2018, 5, 651-663.	3.7	300
10	Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.	4.4	256
11	Brain–computer interface in paralysis. Current Opinion in Neurology, 2008, 21, 634-638.	3.6	221
12	Learned regulation of brain metabolism. Trends in Cognitive Sciences, 2013, 17, 295-302.	7.8	195
13	Brain–Computer Interface–Based Communication in the Completely Locked-In State. PLoS Biology, 2017, 15, e1002593.	5.6	176
14	Real-time fMRI brain computer interfaces: Self-regulation of single brain regions to networks. Biological Psychology, 2014, 95, 4-20.	2.2	147
15	Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain, 2019, 142, 2182-2197.	7.6	138
16	Neuronal mechanisms underlying control of a brain-computer interface. European Journal of Neuroscience, 2005, 21, 3169-3181.	2.6	132
17	Symptom-Specific Psychophysiological Responses in Chronic Pain Patients Psychophysiology, 1992, 29, 452-460.	2.4	131
18	Effects of PRES baroreceptor stimulation on thermal and mechanical pain threshold in borderline hypertensives and normotensives. Psychophysiology, 1994, 31, 480-485.	2.4	130

UJWAL CHAUDHARY

#	Article	IF	CITATIONS
19	Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy. Neurology, 2014, 82, 1930-1932.	1.1	115
20	Help, hope, and hype: Ethical dimensions ofneuroprosthetics. Science, 2017, 356, 1338-1339.	12.6	83
21	Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs). Experimental Brain Research, 2003, 152, 113-122.	1.5	80
22	Physiological regulation of thinking: brain–computer interface (BCI) research. Progress in Brain Research, 2006, 159, 369-391.	1.4	79
23	Brain communication in the locked-in state. Brain, 2013, 136, 1989-2000.	7.6	73
24	Complexity of electrocortical dynamics in children: Developmental aspects. Developmental Psychobiology, 2000, 36, 9-22.	1.6	60
25	The Influence of Low-Level Transcortical DC-Currents on Response Speed in Humans. International Journal of Neuroscience, 1981, 14, 101-114.	1.6	58
26	Quality of life in fatal disease: the flawed judgement of the social environment. Journal of Neurology, 2013, 260, 2836-2843.	3.6	57
27	Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nature Communications, 2022, 13, 1236.	12.8	54
28	Direct Brain Control and Communication in Paralysis. Brain Topography, 2014, 27, 4-11.	1.8	52
29	Slow Cortical Potentials Under Conditions of Uncontrollability. Psychophysiology, 1979, 16, 374-380.	2.4	51
30	Frontal activation and connectivity using near-infrared spectroscopy: Verbal fluency language study. Brain Research Bulletin, 2011, 84, 197-205.	3.0	48
31	The Effects of Self-Regulation of Slow Cortical Potentials on Performance in a Signal Detection Task. International Journal of Neuroscience, 1979, 9, 175-183.	1.6	46
32	Neuropsychological and neurophysiological aspects of brainâ€computerâ€interface (BCI) control in paralysis. Journal of Physiology, 2021, 599, 2351-2359.	2.9	45
33	Motor Learning: Passing a Skill from One Hand to the Other. Current Biology, 2007, 17, R1024-R1026.	3.9	43
34	Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI). Psychological Research, 2012, 76, 183-191.	1.7	41
35	Modulation of Slow Cortical Potentials by Instrumentally Learned Blood Pressure Responses. Psychophysiology, 1992, 29, 154-164.	2.4	35
36	Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 390-396.	1.7	35

UJWAL CHAUDHARY

#	Article	IF	CITATIONS
37	Handedness, musical abilities, and dichaptic and dichotic performance in adolescents: A longitudinal study. Developmental Neuropsychology, 1988, 4, 129-145.	1.4	34
38	Fragmentation of Slow Wave Sleep after Onset of Complete Locked-In State. Journal of Clinical Sleep Medicine, 2013, 09, 951-953.	2.6	22
39	Rain Man's revelations. Nature, 1999, 399, 211-212.	27.8	21
40	Long-term use of a neural prosthesis in progressive paralysis. Scientific Reports, 2018, 8, 16787.	3.3	21
41	Learned control of inter-hemispheric connectivity: Effects on bimanual motor performance. Human Brain Mapping, 2017, 38, 4353-4369.	3.6	20
42	Simultaneous epidural functional near-infrared spectroscopy and cortical electrophysiology as a tool for studying local neurovascular coupling in primates. NeuroImage, 2015, 120, 394-399.	4.2	17
43	Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating. Journal of Thermal Spray Technology, 2013, 22, 1193-1200.	3.1	16
44	Auditory Electrooculogram-based Communication System for ALS Patients in Transition from Locked-in to Complete Locked-in State. Scientific Reports, 2020, 10, 8452.	3.3	16
45	Distractability under the Influence of an Acth 4-9 Derivative. International Journal of Neuroscience, 1983, 22, 21-36.	1.6	15
46	Direct brain communication: neuroelectric and metabolic approaches at Ti¿½bingen. Cognitive Processing, 2005, 6, 65-74.	1.4	14
47	Semantic and BCI-performance in completely paralyzed patients: Possibility of language attrition in completely locked in syndrome. Brain and Language, 2019, 194, 93-97.	1.6	14
48	Sleep in the completely locked-in state (CLIS) in amyotrophic lateral sclerosis. Sleep, 2019, 42, .	1.1	13
49	Motor response investigation in individuals with cerebral palsy using near infrared spectroscopy: pilot study. Applied Optics, 2014, 53, 503.	1.8	12
50	Response to: "Questioning the evidence for BCI-based communication in the complete locked-in state― PLoS Biology, 2019, 17, e3000063.	5.6	12
51	Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification. Sensors, 2020, 20, 2443.	3.8	11
52	Electroencephalography of completely locked-in state patients with amyotrophic lateral sclerosis. Neuroscience Research, 2021, 162, 45-51.	1.9	11
53	A dataset of EEG and EOG from an auditory EOG-based communication system for patients in locked-in state. Scientific Data, 2021, 8, 8.	5.3	11
54	Learning from brain control: clinical application of brain–computer interfaces. E-Neuroforum, 2015, 6, 87-95.	0.1	10

UJWAL CHAUDHARY

#	Article	IF	CITATIONS
55	EEG power spectral density in locked-in and completely locked-in state patients: a longitudinal study. Cognitive Neurodynamics, 2021, 15, 473-480.	4.0	10
56	Brain Computer Interfaces for Assisted Communication in Paralysis and Quality of Life. International Journal of Neural Systems, 2021, 31, 2130003.	5.2	10
57	Neurophysiological aspects of the completely locked-in syndrome in patients with advanced amyotrophic lateral sclerosis. Clinical Neurophysiology, 2021, 132, 1064-1076.	1.5	8
58	Fronto-temporal mapping and connectivity using NIRS for language-related paradigms. Journal of Neurolinguistics, 2013, 26, 178-194.	1.1	7
59	The Influence of Low-Level, Event-Related Dc-Currents During Time Estimation in Humans. International Journal of Neuroscience, 1981, 15, 103-106.	1.6	6
60	Effects of Baroreceptor Stimulation on Sensorimotor Control of the Hand. Somatosensory & Motor Research, 1993, 10, 41-50.	0.9	6
61	Learning from brain control: clinical application of brain–computer interfaces. E-Neuroforum, 2015, 21, .	0.1	6
62	Does activation of the baroreceptors reinforce differential Pavlovian conditioning of heart rate responses?. Psychophysiology, 1993, 30, 531-536.	2.4	5
63	A 20-Questions-Based Binary Spelling Interface for Communication Systems. Brain Sciences, 2018, 8, 126.	2.3	4
64	For distinguished contributions to psychophysiology: Robert M. Stern. Psychophysiology, 2007, 44, 1.	2.4	3
65	A useful communication in brain-computer interfaces. Neurology, 2018, 91, 109-110.	1.1	3
66	A leg to stand on: Learning creates pain. Behavioral and Brain Sciences, 1997, 20, 441-442.	0.7	2
67	Habit learning and brain–machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehiclesâ€. Biological Cybernetics, 2014, 108, 595-601.	1.3	2
68	Frontal Cortical Connectivity and Lateralisation of Joint Attention Experience Using near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2011, 19, 105-116.	1.5	1
69	Neural Signatures of Modified Memories. Neuron, 2014, 81, 3-5.	8.1	1
70	Complexity of electrocortical dynamics in children: Developmental aspects. , 2000, 36, 9.		1
71	Longitudinal Analysis of the Connectivity and Complexity of Complete Locked-in Syndrome Patients Electroencephalographic signal. , 2020, , .		1
72	Lernen von Hirnkontrolle – Klinische Anwendung von Brain-Computer Interfaces. E-Neuroforum, 2015, 21, 130-143.	0.1	0

#	Article	IF	CITATIONS
73	Binary Semantic Classification Using Cortical Activation with Pavlovian-Conditioned Vestibular Responses in Healthy and Locked-In Individuals. Cerebral Cortex Communications, 2021, 2, tgab046.	1.6	0