Dario Farina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6167951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward higher-performance bionic limbs for wider clinical use. Nature Biomedical Engineering, 2023, 7, 473-485.	22.5	104
2	Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. Journal of Physiology, 2023, 601, 3187-3199.	2.9	4
3	Correlation networks of spinal motor neurons that innervate lower limb muscles during a multiâ€joint isometric task. Journal of Physiology, 2023, 601, 3201-3219.	2.9	18
4	Rehabilitation of high upper limb amputees after Targeted Muscle Reinnervation. Journal of Hand Therapy, 2022, 35, 58-66.	1.5	10
5	Intramuscular EMG-Driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients. IEEE Transactions on Biomedical Engineering, 2022, 69, 63-74.	4.2	15
6	Highly Accurate Real-Time Decomposition of Single Channel Intramuscular EMG. IEEE Transactions on Biomedical Engineering, 2022, 69, 746-757.	4.2	3
7	Analytical Modelling of Surface EMG Signals Generated by Curvilinear Fibers With Approximate Conductivity Tensor. IEEE Transactions on Biomedical Engineering, 2022, 69, 1052-1062.	4.2	1
8	Electrotactile and Vibrotactile Feedback Enable Similar Performance in Psychometric Tests and Closed-Loop Control. IEEE Transactions on Haptics, 2022, 15, 222-231.	2.7	6
9	Lack of increased rate of force development after strength training is explained by specific neural, not muscular, motor unit adaptations. Journal of Applied Physiology, 2022, 132, 84-94.	2.5	7
10	Co-Adaptive Control of Bionic Limbs via Unsupervised Adaptation of Muscle Synergies. IEEE Transactions on Biomedical Engineering, 2022, 69, 2581-2592.	4.2	9
11	Online Tracking of the Phase Difference Between Neural Drives to Antagonist Muscle Pairs in Essential Tremor Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 709-718.	4.9	7
12	Case Report: Plasticity in Central Sensory Finger Representation and Touch Perception After Microsurgical Reconstruction of Infraclavicular Brachial Plexus Injury. Frontiers in Neuroscience, 2022, 16, 793036.	2.8	0
13	Feasibility of a Wireless Implantable Multi-electrode System for High-bandwidth Prosthetic Interfacing: Animal and Cadaver Study. Clinical Orthopaedics and Related Research, 2022, 480, 1191-1204.	1.5	4
14	Reading and Modulating Cortical Î ² Bursts from Motor Unit Spiking Activity. Journal of Neuroscience, 2022, 42, 3611-3621.	3.6	20
15	Principles of human movement augmentation and the challenges in making it a reality. Nature Communications, 2022, 13, 1345.	12.8	34
16	Kernel Density Estimation of Electromyographic Signals and Ensemble Learning for Highly Accurate Classification of a Large Set of Hand/Wrist Motions. Frontiers in Neuroscience, 2022, 16, 796711.	2.8	3
17	Far-field electric potentials provide access to the output from the spinal cord from wrist-mounted sensors. Journal of Neural Engineering, 2022, 19, 026031.	3.5	8
18	Consensus for experimental design in electromyography (CEDE) project: High-density surface electromyography matrix. Journal of Electromyography and Kinesiology, 2022, 64, 102656.	1.7	22

#	Article	IF	CITATIONS
19	Associative cued asynchronous <scp>BCI</scp> induces cortical plasticity in stroke patients. Annals of Clinical and Translational Neurology, 2022, 9, 722-733.	3.7	6
20	Motor Unit Discharge Patterns in Response to Focal Tendon Vibration of the Lower Limb in Cats and Humans. Frontiers in Integrative Neuroscience, 2022, 16, 836757.	2.1	2
21	Hand Gesture Recognition Using Temporal Convolutions and Attention Mechanism. , 2022, , .		12
22	Optimization of HD-sEMG-Based Cross-Day Hand Gesture Classification by Optimal Feature Extraction and Data Augmentation. IEEE Transactions on Human-Machine Systems, 2022, 52, 1281-1291.	3.5	12
23	Reducing the Calibration Time in Somatosensory BCI by Using Tactile ERD. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1870-1876.	4.9	9
24	Control of Spinal Motoneurons by Feedback From a Non-Invasive Real-Time Interface. IEEE Transactions on Biomedical Engineering, 2021, 68, 926-935.	4.2	30
25	Deep Learning for Robust Decomposition of High-Density Surface EMG Signals. IEEE Transactions on Biomedical Engineering, 2021, 68, 526-534.	4.2	52
26	Individual differences in the neural strategies to control the lateral and medial head of the quadriceps during a mechanically constrained task. Journal of Applied Physiology, 2021, 130, 269-281.	2.5	28
27	Muscles from the same muscle group do not necessarily share common drive: evidence from the human triceps surae. Journal of Applied Physiology, 2021, 130, 342-354.	2.5	61
28	Intramuscular Stimulation of Muscle Afferents Attains Prolonged Tremor Reduction in EssentialÂTremor Patients. IEEE Transactions on Biomedical Engineering, 2021, 68, 1768-1776.	4.2	22
29	FS-HGR: Few-Shot Learning for Hand Gesture Recognition via Electromyography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1004-1015.	4.9	65
30	Prosthetic Feedback Systems. , 2021, , 147-167.		2
31	Control Strategies for Functional Upper Limb Prostheses. , 2021, , 127-135.		2
32	Enhancing IoT Security via Cancelable HD-sEMG-Based Biometric Authentication Password, Encoded by Gesture. IEEE Internet of Things Journal, 2021, 8, 16535-16547.	8.7	33
33	Treatment Strategies for Phantom Limb Pain. , 2021, , 113-124.		1
34	Towards human motor augmentation by voluntary decoupling beta activity in the neural drive to muscle and force production. Journal of Neural Engineering, 2021, 18, 016001.	3.5	20
35	Long exposure convolutional memory network for accurate estimation of finger kinematics from surface electromyographic signals. Journal of Neural Engineering, 2021, 18, 026027.	3.5	26
36	Force Steadiness: From Motor Units to Voluntary Actions. Physiology, 2021, 36, 114-130.	3.1	66

#	Article	IF	CITATIONS
37	Towards a mechanistic approach for the development of nonâ€invasive brainâ€computer interfaces for motor rehabilitation. Journal of Physiology, 2021, 599, 2361-2374.	2.9	22
38	Only the Fastest Corticospinal Fibers Contribute to \hat{I}^2 Corticomuscular Coherence. Journal of Neuroscience, 2021, 41, 4867-4879.	3.6	26
39	Prosthetic Embodiment and Body Image Changes in Patients Undergoing Bionic Reconstruction Following Brachial Plexus Injury. Frontiers in Neurorobotics, 2021, 15, 645261.	2.8	7
40	Brainâ€computer interfaces and plasticity of the human nervous system. Journal of Physiology, 2021, 599, 2349-2350.	2.9	1
41	Simultaneous and proportional control of wrist and hand movements by decoding motor unit discharges in real time. Journal of Neural Engineering, 2021, 18, 056010.	3.5	36
42	Altered evoked low-frequency connectivity from SI to ACC following nerve injury in rats. Journal of Neural Engineering, 2021, 18, 046063.	3.5	1
43	Analysis of motor unit spike trains estimated from high-density surface electromyography is highly reliable across operators. Journal of Electromyography and Kinesiology, 2021, 58, 102548.	1.7	61
44	Online control of an assistive active glove by slow cortical signals in patients with amyotrophic lateral sclerosis. Journal of Neural Engineering, 2021, 18, 046085.	3.5	6
45	Synergistic Organization of Neural Inputs from Spinal Motor Neurons to Extrinsic and Intrinsic Hand Muscles. Journal of Neuroscience, 2021, 41, 6878-6891.	3.6	28
46	Noninvasive Neural Interfacing With Wearable Muscle Sensors: Combining Convolutive Blind Source Separation Methods and Deep Learning Techniques for Neural Decoding. IEEE Signal Processing Magazine, 2021, 38, 103-118.	5.6	37
47	Signal Processing for Neurorehabilitation and Assistive Technologies [From the Guest Editors]. IEEE Signal Processing Magazine, 2021, 38, 5-7.	5.6	5
48	Consensus for experimental design in electromyography (CEDE) project: Terminology matrix. Journal of Electromyography and Kinesiology, 2021, 59, 102565.	1.7	29
49	Artificial Perception and Semiautonomous Control in Myoelectric Hand Prostheses Increases Performance and Decreases Effort. IEEE Transactions on Robotics, 2021, 37, 1298-1312.	10.3	21
50	Surface EMG cross talk quantified at the motor unit population level for muscles of the hand, thigh, and calf. Journal of Applied Physiology, 2021, 131, 808-820.	2.5	25
51	Recruitment order of motor neurons promoted by epidural stimulation in individuals with spinal cord injury. Journal of Applied Physiology, 2021, 131, 1100-1110.	2.5	12
52	Participant-specific classifier tuning increases the performance of hand movement detection from EEG in patients with amyotrophic lateral sclerosis. Journal of Neural Engineering, 2021, 18, 056023.	3.5	6
53	Human-Robot Interaction With Robust Prediction of Movement Intention Surpasses Manual Control. Frontiers in Neurorobotics, 2021, 15, 695022.	2.8	5
54	Pain-induced changes in motor unit discharge depend on recruitment threshold and contraction speed. Journal of Applied Physiology, 2021, 131, 1260-1271.	2.5	10

#	Article	IF	CITATIONS
55	Proof of concept for multiple nerve transfers to a single target muscle. ELife, 2021, 10, .	6.0	5
56	Motor Unit Characteristics After Selective Nerve Transfers. , 2021, , 83-91.		0
57	Spinal Interfacing via Muscle Recordings for Neuroprosthesis Control. , 2021, , 1-29.		Ο
58	Behavior of motor units during submaximal isometric contractions in chronically strength-trained individuals. Journal of Applied Physiology, 2021, 131, 1584-1598.	2.5	11
59	Deficit in knee extension strength following anterior cruciate ligament reconstruction is explained by a reduced neural drive to the vasti muscles. Journal of Physiology, 2021, 599, 5103-5120.	2.9	35
60	Therapy Interventions for Upper Limb Amputees Undergoing Selective Nerve Transfers. Journal of Visualized Experiments, 2021, , .	0.3	1
61	Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array. Journal of Neurophysiology, 2021, 126, 2104-2118.	1.8	23
62	Recursive Decomposition of Electromyographic Signals With a Varying Number of Active Sources: Bayesian Modeling and Filtering. IEEE Transactions on Biomedical Engineering, 2020, 67, 428-440.	4.2	8
63	Neural and muscular determinants of maximal rate of force development. Journal of Neurophysiology, 2020, 123, 149-157.	1.8	35
64	Interfacing the neural output of the spinal cord: robust and reliable longitudinal identification of motor neurons in humans. Journal of Neural Engineering, 2020, 17, 016003.	3.5	37
65	Hand gesture recognition based on motor unit spike trains decoded from high-density electromyography. Biomedical Signal Processing and Control, 2020, 55, 101637.	5.7	65
66	Dual-Parameter Modulation Improves Stimulus Localization in Multichannel Electrotactile Stimulation. IEEE Transactions on Haptics, 2020, 13, 393-403.	2.7	13
67	Plasticity induced by pairing brain stimulation with motor-related states only targets a subset of cortical neurones. Brain Stimulation, 2020, 13, 464-466.	1.6	8
68	Strength Training Increases Conduction Velocity of High-Threshold Motor Units. Medicine and Science in Sports and Exercise, 2020, 52, 955-967.	0.4	27
69	Neurophysiological correlates of force control improvement induced by sinusoidal vibrotactile stimulation. Journal of Neural Engineering, 2020, 17, 016043.	3.5	11
70	The Interaction Between Feedback Type and Learning in Routine Grasping With Myoelectric Prostheses. IEEE Transactions on Haptics, 2020, 13, 645-654.	2.7	13
71	Comparison of Intramuscular and Surface Electromyography Recordings Towards the Control of Wearable Robots for Incomplete Spinal Cord Injury Rehabilitation. , 2020, , .		8
72	Wearable multichannel haptic device for encoding proprioception in the upper limb. Journal of Neural Engineering, 2020, 17, 056035.	3.5	12

#	Article	IF	CITATIONS
73	Spinal motoneurons of the human newborn are highly synchronized during leg movements. Science Advances, 2020, 6, .	10.3	44
74	Energetic Passivity Decoding of Human Hip Joint for Physical Human-Robot Interaction. IEEE Robotics and Automation Letters, 2020, 5, 5953-5960.	5.1	10
75	Editorial: Autonomy and Intelligence in Neurorehabilitation Robotic and Prosthetic Technologies. Journal of Medical Robotics Research, 2020, 05, 2002001.	1.2	0
76	Subject-Specific EMG Modeling with Multiple Muscles: A Preliminary Study. , 2020, 2020, 740-743.		2
77	Inability to increase the neural drive to muscle is associated with task failure during submaximal contractions. Journal of Neurophysiology, 2020, 124, 1110-1121.	1.8	24
78	On the Selection of Neural Network Architecture for Supervised Motor Unit Identification from High-Density Surface EMG. , 2020, 2020, 736-739.		3
79	Toward Universal Neural Interfaces for Daily Use: Decoding the Neural Drive to Muscles Generalises Highly Accurate Finger Task Identification Across Humans. IEEE Access, 2020, 8, 149025-149035.	4.2	15
80	A Multimodal Intention Detection Sensor Suite for Shared Autonomy of Upper-Limb Robotic Prostheses. Sensors, 2020, 20, 6097.	3.8	16
81	Miniaturized Magnetic Sensors for Implantable Magnetomyography. Advanced Materials Technologies, 2020, 5, 2000185.	5.8	53
82	Wearable Dual-Frequency Vibrotactile System for Restoring Force and Stiffness Perception. IEEE Transactions on Haptics, 2020, 13, 191-196.	2.7	11
83	On-Line Recursive Decomposition of Intramuscular EMG Signals Using GPU-Implemented Bayesian Filtering. IEEE Transactions on Biomedical Engineering, 2020, 67, 1806-1818.	4.2	5
84	Adaptive Spatial Filtering of High-Density EMG for Reducing the Influence of Noise and Artefacts in Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1511-1517.	4.9	26
85	Tutorial: Analysis of motor unit discharge characteristics from high-density surface EMG signals. Journal of Electromyography and Kinesiology, 2020, 53, 102426.	1.7	193
86	Real-time neurofeedback is effective in reducing diversion of attention from a motor task in healthy individuals and patients with amyotrophic lateral sclerosis. Journal of Neural Engineering, 2020, 17, 036017.	3.5	4
87	Magnetomyography: Miniaturized Magnetic Sensors for Implantable Magnetomyography (Adv. Mater.) Tj ETQq1	1	14 ₁ rgBT /Ov
88	Longitudinal Case Study of Regression-Based Hand Prosthesis Control in Daily Life. Frontiers in Neuroscience, 2020, 14, 600.	2.8	77
89	Muscle fiber conduction velocity in the vastus lateralis and medialis muscles of soccer players after ACL reconstruction. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1976-1984.	2.9	13
90	Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. Journal of Electromyography and Kinesiology, 2020, 53, 102438.	1.7	170

#	Article	IF	CITATIONS
91	Divergent response of low― <i>versus</i> highâ€ŧhreshold motor units to experimental muscle pain. Journal of Physiology, 2020, 598, 2093-2108.	2.9	40
92	Direct translation of findings in isolated animal preparations to <i>in vivo</i> human motoneuron behaviour is challenging. Journal of Physiology, 2020, 598, 1111-1112.	2.9	0
93	Real-Time Interface Algorithm for Ankle Kinematics and Stiffness From Electromyographic Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1416-1427.	4.9	8
94	Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals. IEEE Transactions on Biomedical Engineering, 2020, 67, 3501-3509.	4.2	51
95	Neuro-Musculoskeletal Mapping for Man-Machine Interfacing. Scientific Reports, 2020, 10, 5834.	3.3	38
96	Simulation of Motor Unit Action Potential Recordings From Intramuscular Multichannel Scanning Electrodes. IEEE Transactions on Biomedical Engineering, 2020, 67, 2005-2014.	4.2	12
97	Non-invasive analysis of motor neurons controlling the intrinsic and extrinsic muscles of the hand. Journal of Neural Engineering, 2020, 17, 046033.	3.5	17
98	Nerve Injury Decreases Hyperacute Resting-State Connectivity Between the Anterior Cingulate and Primary Somatosensory Cortex in Anesthetized Rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2691-2698.	4.9	3
99	Sensory Stimulation Training for BCI System Based on Somatosensory Attentional Orientation. IEEE Transactions on Biomedical Engineering, 2019, 66, 640-646.	4.2	24
100	An Online Spectral Information-Enhanced Approach for Artifact Detection and Fault Attentuation in Myoelectric Control*. , 2019, 2019, 671-675.		0
101	Multiclass Detection and Tracking of Transient Motor Activation based on Decomposed Myoelectric Signals. , 2019, , .		9
102	Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Science Robotics, 2019, 4, .	17.6	81
103	Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 91.	4.6	76
104	Modulation of Cortical Excitability with BCI for Stroke Rehabilitation. , 2019, , .		1
105	Amplitude cancellation influences the association between frequency components in the neural drive to muscle and the rectified EMG signal. PLoS Computational Biology, 2019, 15, e1006985.	3.2	25
106	Optimal automatic detection of muscle activation intervals. Journal of Electromyography and Kinesiology, 2019, 48, 103-111.	1.7	21
107	Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. Journal of Electromyography and Kinesiology, 2019, 48, 128-144.	1.7	95
108	Exogenous neuromodulation of spinal neurons induces beta-band coherence during self-sustained discharge of hind limb motor unit populations. Journal of Applied Physiology, 2019, 127, 1034-1041.	2.5	6

#	Article	IF	CITATIONS
109	A high-density surface EMG framework for the study of motor neurons controlling the intrinsic and extrinsic muscles of the hand. , 2019, 2019, 2307-2310.		4
110	A wearable neural interface for detecting and decoding attempted hand movements in a person with tetraplegia. , 2019, 2019, 1930-1933.		14
111	Modulation of reciprocal inhibition at the wrist as a neurophysiological correlate of tremor suppression: a pilot healthy subject study. , 2019, 2019, 6267-6272.		9
112	The human central nervous system transmits common synaptic inputs to distinct motor neuron pools during nonâ€synergistic digit actions. Journal of Physiology, 2019, 597, 5935-5948.	2.9	42
113	Structured Motor Rehabilitation After Selective Nerve Transfers. Journal of Visualized Experiments, 2019, , .	0.3	14
114	Can Multi-DoF Training Improve Robustness of Muscle Synergy Inspired Myocontrollers?. , 2019, 2019, 665-670.		1
115	Voluntary and tremorogenic inputs to motor neuron pools of agonist/antagonist muscles in essential tremor patients. Journal of Neurophysiology, 2019, 122, 2043-2053.	1.8	19
116	Estimation of Phantom Arm Mechanics About Four Degrees of Freedom After Targeted Muscle Reinnervation. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 58-64.	3.2	14
117	Directional Forgetting for Stable Co-Adaptation in Myoelectric Control. Sensors, 2019, 19, 2203.	3.8	11
118	The relative strength of common synaptic input to motor neurons is not a determinant of the maximal rate of force development in humans. Journal of Applied Physiology, 2019, 127, 205-214.	2.5	30
119	Continuous 2D control via state-machine triggered by endogenous sensory discrimination and a fast brain switch. Journal of Neural Engineering, 2019, 16, 056001.	3.5	13
120	The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Frontiers in Physiology, 2019, 10, 545.	2.8	10
121	Transferrable Expertise From Bionic Arms to Robotic Exoskeletons: Perspectives for Stroke and Duchenne Muscular Dystrophy. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 88-96.	3.2	15
122	Oscillations in neural drive and age-related reductions in force steadiness with a cognitive challenge. Journal of Applied Physiology, 2019, 126, 1056-1065.	2.5	22
123	Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 47.	4.6	65
124	Classification of Movement Preparation Between Attended and Distracted Self-Paced Motor Tasks. IEEE Transactions on Biomedical Engineering, 2019, 66, 3060-3071.	4.2	6
125	The increase in muscle force after 4Âweeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. Journal of Physiology, 2019, 597, 1873-1887.	2.9	212
126	A thin-film multichannel electrode for muscle recording and stimulation in neuroprosthetics applications. Journal of Neural Engineering, 2019, 16, 026035.	3.5	26

#	Article	IF	CITATIONS
127	Clinical Perspectives in Upper Limb Prostheses: An Update. Current Surgery Reports, 2019, 7, 1.	0.9	37
128	You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. Journal of Physiology, 2019, 597, 2445-2456.	2.9	205
129	Adaptive learning in the detection of Movement Related Cortical Potentials improves usability of associative Brain-Computer Interfaces. , 2019, 2019, 3079-3082.		2
130	Peripheral nerve transfers change target muscle structure and function. Science Advances, 2019, 5, eaau2956.	10.3	46
131	Brain state–dependent stimulation boosts functional recovery following stroke. Annals of Neurology, 2019, 85, 84-95.	5.3	41
132	Tactile Stimulation Improves Sensorimotor Rhythm-Based BCI Performance in Stroke Patients. IEEE Transactions on Biomedical Engineering, 2019, 66, 1987-1995.	4.2	32
133	Bionic hand as artificial organ: Current status and future perspectives. Artificial Organs, 2019, 43, 109-118.	1.9	20
134	Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. Journal of Neural Engineering, 2019, 16, 016010.	3.5	27
135	Online Finger Control Using High-Density EMG and Minimal Training Data for Robotic Applications. IEEE Robotics and Automation Letters, 2019, 4, 217-223.	5.1	37
136	Prediction of finger kinematics from discharge timings of motor units: implications for intuitive control of myoelectric prostheses. Journal of Neural Engineering, 2019, 16, 026005.	3.5	41
137	Experimental Testing of Bionic Peripheral Nerve and Muscle Interfaces: Animal Model Considerations. Frontiers in Neuroscience, 2019, 13, 1442.	2.8	9
138	Analysis of Intramuscular Motor Unit Coherence in the Tibialis Anterior Muscle as a Tool for the Assessment of Robot-Assisted Rehabilitation. Biosystems and Biorobotics, 2019, , 231-235.	0.3	0
139	Psychophysical Evaluation of Subdermal Electrical Stimulation in Relation to Prosthesis Sensory Feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 709-715.	4.9	20
140	Performance of Brain–Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 60-68.	4.9	12
141	Online mapping of EMG signals into kinematics by autoencoding. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 21.	4.6	68
142	The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 28.	4.6	97
143	Live Demonstration: Electrotactile feedback from an electronic skin through flexible electrode matrix. , 2018, , .		0
144	Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output. Journal of Physiology, 2018, 596, 2643-2659.	2.9	98

#	Article	IF	CITATIONS
145	Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance. Experimental Brain Research, 2018, 236, 1471-1478.	1.5	6
146	Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms. IEEE Transactions on Biomedical Engineering, 2018, 65, 556-564.	4.2	105
147	Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization. Journal of Neural Engineering, 2018, 15, 026017.	3.5	51
148	Decoding Motor Unit Activity From Forearm Muscles: Perspectives for Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 244-251.	4.9	58
149	Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation. IEEE Transactions on Biomedical Engineering, 2018, 65, 1689-1695.	4.2	17
150	Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle. Acta Physiologica, 2018, 222, e12930.	3.8	58
151	Comparison of fMRI Digit Representations of the Dominant and Non-dominant Hand in the Human Primary Somatosensory Cortex. Frontiers in Human Neuroscience, 2018, 12, 492.	2.0	21
152	Stroke increases ischemia-related decreases in motor unit discharge rates. Journal of Neurophysiology, 2018, 120, 3246-3256.	1.8	13
153	A real-time surface EMG decomposition system for non-invasive human-machine interfaces. , 2018, , .		20
154	Live Demonstration: System based on Electronic Skin and Cutaneous Electrostimulation for Sensory Feedback in Prosthetics. , 2018, , .		1
155	Early Motor Unit Conduction Velocity Changes to High-Intensity Interval Training versus Continuous Training. Medicine and Science in Sports and Exercise, 2018, 50, 2339-2350.	0.4	29
156	Estimation of Phantom Limb Musculoskeletal Mechanics After Targeted Muscle Reinnervation: Towards Online Model-Based Control of Myoelectric Bionic Limbs* Resrach supported by ERC Advanced Grant DEMOVE (267888) , 2018, , .		3
157	Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. Journal of Neural Engineering, 2018, 15, 066026.	3.5	97
158	Relieving phantom limb pain with multimodal sensory-motor training. Journal of Neural Engineering, 2018, 15, 066022.	3.5	31
159	Rehabilitation Induced Neural Plasticity after Acquired Brain Injury. Neural Plasticity, 2018, 2018, 1-3.	2.2	12
160	3D printed upper limb prosthetics. Expert Review of Medical Devices, 2018, 15, 505-512.	2.8	48
161	A Multi-Class BCI Based on Somatosensory Imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1508-1515.	4.9	21
162	Central nervous system modulates the neuromechanical delay in a broad range for the control of muscle force. Journal of Applied Physiology, 2018, 125, 1404-1410.	2.5	49

#	Article	IF	CITATIONS
163	Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles. Journal of Applied Physiology, 2018, 124, 1071-1079.	2.5	96
164	A hybrid auricular control system: direct, simultaneous, and proportional myoelectric control of two degrees of freedom in prosthetic hands. Journal of Neural Engineering, 2018, 15, 056028.	3.5	12
165	Stacked Sparse Autoencoders for EMG-Based Classification of Hand Motions: A Comparative Multi Day Analyses between Surface and Intramuscular EMG. Applied Sciences (Switzerland), 2018, 8, 1126.	2.5	45
166	Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques. Sensors, 2018, 18, 2497.	3.8	146
167	A Classification Method for Myoelectric Control of Hand Prostheses Inspired by Muscle Coordination. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1745-1755.	4.9	28
168	Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans. Journal of Neurophysiology, 2018, 119, 1699-1706.	1.8	27
169	Motor unit territories in human genioglossus estimated with multichannel intramuscular electrodes. Journal of Applied Physiology, 2018, 124, 664-671.	2.5	23
170	Higher muscle fiber conduction velocity and early rate of torque development in chronically strength-trained individuals. Journal of Applied Physiology, 2018, 125, 1218-1226.	2.5	42
171	Decrease in force steadiness with aging is associated with increased power of the common but not independent input to motor neurons. Journal of Neurophysiology, 2018, 120, 1616-1624.	1.8	40
172	Estimation of Neuromuscular Primitives from EEG Slow Cortical Potentials in Incomplete Spinal Cord Injury Individuals for a New Class of Brain-Machine Interfaces. Frontiers in Computational Neuroscience, 2018, 12, 3.	2.1	12
173	Coherence of the Surface EMG and Common Synaptic Input to Motor Neurons. Frontiers in Human Neuroscience, 2018, 12, 207.	2.0	28
174	Does vibration superimposed on low-level isometric contraction alter motor unit recruitment strategy?. Journal of Neural Engineering, 2018, 15, 066001.	3.5	12
175	Simultaneous control of multiple functions of bionic hand prostheses: Performance and robustness in end users. Science Robotics, 2018, 3, .	17.6	158
176	A Multi-Class Tactile Brain–Computer Interface Based on Stimulus-Induced Oscillatory Dynamics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 3-10.	4.9	20
177	A BCI System Based on Somatosensory Attentional Orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 81-90.	4.9	29
178	Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 183-195.	4.9	98
179	Tickâ€ŧock, spinal motor neurons go with the cortical clock in young infants. Journal of Physiology, 2017, 595, 2405-2406.	2.9	2
180	Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nature Biomedical Engineering, 2017, 1, .	22.5	245

Dario Farina

#	Article	IF	CITATIONS
181	Correlation between discharge timings of pairs of motor units reveals the presence but not the proportion of common synaptic input to motor neurons. Journal of Neurophysiology, 2017, 117, 1749-1760.	1.8	9
182	Differential Motor Unit Changes after Endurance or High-Intensity Interval Training. Medicine and Science in Sports and Exercise, 2017, 49, 1126-1136.	0.4	63
183	Classification of EEG signals to identify variations in attention during motor task execution. Journal of Neuroscience Methods, 2017, 284, 27-34.	2.5	45
184	A Real-Time Method for Decoding the Neural Drive to Muscles Using Single-Channel Intra-Muscular EMG Recordings. International Journal of Neural Systems, 2017, 27, 1750025.	5.2	29
185	Decomposition of Multi-Channel Intramuscular EMG Signals by Cyclostationary-Based Blind Source Separation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 2035-2045.	4.9	20
186	Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Experimental Brain Research, 2017, 235, 2547-2559.	1.5	45
187	Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 2133-2145.	4.9	66
188	GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses. Journal of Neural Engineering, 2017, 14, 036007.	3.5	40
189	A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1674-1682.	4.9	38
190	Tracking motor units longitudinally across experimental sessions with highâ€density surface electromyography. Journal of Physiology, 2017, 595, 1479-1496.	2.9	139
191	Toward modeling locomotion using electromyographyâ€informed 3D models: application to cerebral palsy. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1368.	6.6	31
192	In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function. Scientific Reports, 2017, 7, 13465.	3.3	58
193	Common Synaptic Input to Motor Neurons and Neural Drive to Targeted Reinnervated Muscles. Journal of Neuroscience, 2017, 37, 11285-11292.	3.6	32
194	Axonal components of nerves innervating the human arm. Annals of Neurology, 2017, 82, 396-408.	5.3	111
195	Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential. Brain Research, 2017, 1674, 10-19.	2.2	21
196	The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Brain Research, 2017, 1674, 91-100.	2.2	28
197	Associations between motor unit action potential parameters and surface EMG features. Journal of Applied Physiology, 2017, 123, 835-843.	2.5	115
198	User adaptation in Myoelectric Man-Machine Interfaces. Scientific Reports, 2017, 7, 4437.	3.3	104

#	Article	IF	CITATIONS
199	Specificity of surface EMG recordings for gastrocnemius during upright standing. Scientific Reports, 2017, 7, 13300.	3.3	36
200	Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients. Clinical Neurophysiology, 2017, 128, 165-175.	1.5	13
201	A System for Electrotactile Feedback Using Electronic Skin and Flexible Matrix Electrodes: Experimental Evaluation. IEEE Transactions on Haptics, 2017, 10, 162-172.	2.7	57
202	Electronic skin and electrocutaneous stimulation to restore the sense of touch in hand prosthetics. , 2017, , .		9
203	Distributed Sensing and Stimulation Systems for Sense of Touch Restoration in Prosthetics. , 2017, , .		11
204	Translating Research on Myoelectric Control into Clinics—Are the Performance Assessment Methods Adequate?. Frontiers in Neurorobotics, 2017, 11, 7.	2.8	79
205	Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor. Frontiers in Neuroscience, 2017, 11, 178.	2.8	44
206	Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials. Frontiers in Neuroscience, 2017, 11, 326.	2.8	4
207	Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications. Frontiers in Neuroscience, 2017, 11, 356.	2.8	42
208	Broadband Prosthetic Interfaces: Combining Nerve Transfers and Implantable Multichannel EMG Technology to Decode Spinal Motor Neuron Activity. Frontiers in Neuroscience, 2017, 11, 421.	2.8	39
209	Prospects of Neurorehabilitation Technologies Based on Robust Decoding of the Neural Drive to Muscles Following Targeted Muscle Reinnervation. Biosystems and Biorobotics, 2017, , 1359-1363.	0.3	1
210	Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking. PLoS ONE, 2017, 12, e0168557.	2.5	11
211	Electrotactile feedback improves performance and facilitates learning in the routine grasping task. European Journal of Translational Myology, 2016, 26, 6069.	1.7	37
212	New developments in prosthetic arm systems. Orthopedic Research and Reviews, 2016, Volume 8, 31-39.	1.1	111
213	A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control. Frontiers in Neuroscience, 2016, 10, 114.	2.8	25
214	Modular Control of Treadmill vs Overground Running. PLoS ONE, 2016, 11, e0153307.	2.5	46
215	Motor Unit Characteristics after Targeted Muscle Reinnervation. PLoS ONE, 2016, 11, e0149772.	2.5	43
216	Detection of Multiple Innervation Zones from Multi-Channel Surface EMG Recordings with Low Signal-to-Noise Ratio Using Graph-Cut Segmentation. PLoS ONE, 2016, 11, e0167954.	2.5	14

#	Article	IF	CITATIONS
217	The human motor neuron pools receive a dominant slowâ€varying common synaptic input. Journal of Physiology, 2016, 594, 5491-5505.	2.9	83
218	Integrated and flexible multichannel interface for electrotactile stimulation. Journal of Neural Engineering, 2016, 13, 046014.	3.5	82
219	Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies. IEEE Transactions on Biomedical Engineering, 2016, 63, 879-893.	4.2	121
220	Electrotactile EMG feedback improves the control of prosthesis grasping force. Journal of Neural Engineering, 2016, 13, 056010.	3.5	80
221	Multichannel electrotactile feedback for simultaneous and proportional myoelectric control. Journal of Neural Engineering, 2016, 13, 056015.	3.5	39
222	Proportional estimation of finger movements from high-density surface electromyography. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 73.	4.6	60
223	Properties of the motor unit action potential shape in proximal and distal muscles of the upper limb in healthy and post-stroke individuals. , 2016, 2016, 335-339.		6
224	Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries. Scientific Reports, 2016, 6, 34960.	3.3	33
225	High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 424-433.	4.9	110
226	Characterization of Human Motor Units From Surface EMG Decomposition. Proceedings of the IEEE, 2016, 104, 353-373.	21.3	143
227	Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. Journal of Neurophysiology, 2016, 115, 1410-1421.	1.8	189
228	Principles of Motor Unit Physiology Evolve With Advances in Technology. Physiology, 2016, 31, 83-94.	3.1	147
229	Endogenous sensory discrimination and selection by a fast brain switch for a high transfer rate brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 901-910.	4.9	22
230	A Novel Method to Generate Amplitude-Frequency Modulated Vibrotactile Stimulation. IEEE Transactions on Haptics, 2016, 9, 3-12.	2.7	20
231	Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation. Journal of Neural Engineering, 2016, 13, 026027.	3.5	391
232	Discriminative Manifold Learning Based Detection of Movement-Related Cortical Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 921-927.	4.9	22
233	Reflections on the present and future of upper limb prostheses. Expert Review of Medical Devices, 2016, 13, 321-324.	2.8	51
234	Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 961-970.	4.9	126

#	Article	IF	CITATIONS
235	High-density surface electromyography provides reliable estimates of motor unit behavior. Clinical Neurophysiology, 2016, 127, 2534-2541.	1.5	89
236	Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 744-753.	4.9	81
237	Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses. PLoS ONE, 2016, 11, e0164987.	2.5	15
238	Short″atency crossed responses in the human biceps femoris muscle. Journal of Physiology, 2015, 593, 3657-3671.	2.9	9
239	A Structured Rehabilitation Protocol for Improved Multifunctional Prosthetic Control: A Case Study. Journal of Visualized Experiments, 2015, , e52968.	0.3	20
240	Estimating reflex responses in large populations of motor units by decomposition of the highâ€density surface electromyogram. Journal of Physiology, 2015, 593, 4305-4318.	2.9	46
241	Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity?. Journal of Neural Engineering, 2015, 12, 036008.	3.5	48
242	Accurate and representative decoding of the neural drive to muscles in humans with multiâ€channel intramuscular thinâ€film electrodes. Journal of Physiology, 2015, 593, 3789-3804.	2.9	87
243	Editorial: Biosignal processing and computational methods to enhance sensory motor neuroprosthetics. Frontiers in Neuroscience, 2015, 9, 434.	2.8	9
244	Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands. PLoS ONE, 2015, 10, e0127528.	2.5	19
245	Common Synaptic Input to Motor Neurons, Motor Unit Synchronization, and Force Control. Exercise and Sport Sciences Reviews, 2015, 43, 23-33.	3.0	208
246	Spatial Correlation of High Density EMG Signals Provides Features Robust to Electrode Number and Shift in Pattern Recognition for Myocontrol. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 189-198.	4.9	136
247	Theoretical Model and Experimental Validation of the estimated proportions of common and independent input to motor neurons. , 2015, 2015, 254-7.		8
248	Online multi-class brain-computer interface for detection and classification of lower limb movement intentions and kinetics for stroke rehabilitation. Brain-Computer Interfaces, 2015, 2, 202-210.	1.8	20
249	The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input. Journal of Applied Physiology, 2015, 119, 1337-1346.	2.5	76
250	Individual finger classification from surface EMG: Influence of electrode set. , 2015, 2015, 7284-7.		9
251	Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. Journal of Neurophysiology, 2015, 114, 2509-2527.	1.8	104
252	Robustness of movement detection techniques from motor execution: Single trial movement related cortical potential. , 2015, , .		7

#	Article	IF	CITATIONS
253	Reply to De Luca, Nawab, and Kline: The proposed method to validate surface EMG signal decomposition remains problematic. Journal of Applied Physiology, 2015, 118, 1085-1085.	2.5	15
254	Jaw tremor as a physiological biomarker of bruxism. Clinical Neurophysiology, 2015, 126, 1746-1753.	1.5	8
255	Sensory Feedback in Prosthetics: A Standardized Test Bench for Closed-Loop Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 267-276.	4.9	33
256	One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor. Journal of Neural Engineering, 2015, 12, 046019.	3.5	15
257	EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 55.	4.6	81
258	The Phase Difference Between Neural Drives to Antagonist Muscles in Essential Tremor Is Associated with the Relative Strength of Supraspinal and Afferent Input. Journal of Neuroscience, 2015, 35, 8925-8937.	3.6	56
259	Detection of movement intention from single-trial movement-related cortical potentials using random and non-random paradigms. Brain-Computer Interfaces, 2015, 2, 29-39.	1.8	12
260	User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control. Journal of Neural Engineering, 2015, 12, 046005.	3.5	126
261	The impact of the stimulation frequency on closed-loop control with electrotactile feedback. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 35.	4.6	29
262	Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet, The, 2015, 385, 2183-2189.	13.7	116
263	A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 827-836.	4.9	65
264	Online Tremor Suppression Using Electromyography and Low-Level Electrical Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 385-395.	4.9	87
265	Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping. Experimental Brain Research, 2015, 233, 1855-1865.	1.5	37
266	The effect of crossed reflex responses on dynamic stability during locomotion. Journal of Neurophysiology, 2015, 114, 1034-1040.	1.8	9
267	Musculoskeletal Representation of a Large Repertoire of Hand Grasping Actions in Primates. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 210-220.	4.9	27
268	The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback. Journal of Neurophysiology, 2015, 114, 1895-1911.	1.8	18
269	Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG. Journal of Neural Engineering, 2015, 12, 056013.	3.5	70
270	Experimental muscle pain increases variability of neural drive to muscle and decreases motor unit coherence in tremor frequency band. Journal of Neurophysiology, 2015, 114, 1041-1047.	1.8	10

#	Article	IF	CITATIONS
271	Classification of motor unit activity following targeted muscle reinnervation. , 2015, , .		10
272	Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input. Journal of Neuroscience, 2015, 35, 12207-12216.	3.6	114
273	Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis. Journal of Neural Engineering, 2015, 12, 066022.	3.5	89
274	Adaptive common average filtering for myocontrol applications. Medical and Biological Engineering and Computing, 2015, 53, 179-186.	2.8	6
275	Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways. Journal of Applied Physiology, 2015, 118, 365-376.	2.5	28
276	Human?Machine Interfacing by Decoding the Surface Electromyogram [Life Sciences]. IEEE Signal Processing Magazine, 2015, 32, 115-120.	5.6	47
277	A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology, 2015, 126, 154-159.	1.5	112
278	Influence of common synaptic input to motor neurons on the neural drive to muscle in essential tremor. Journal of Neurophysiology, 2015, 113, 182-191.	1.8	58
279	Limitations of the Spike-Triggered Averaging for Estimating Motor Unit Twitch Force: A Theoretical Analysis. PLoS ONE, 2014, 9, e92390.	2.5	9
280	Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation. Frontiers in Neuroengineering, 2014, 7, 35.	4.8	21
281	Motor modules of human locomotion: influence of EMG averaging, concatenation, and number of step cycles. Frontiers in Human Neuroscience, 2014, 8, 335.	2.0	166
282	Extending mode switching to multiple degrees of freedom in hand prosthesis control is not efficient. , 2014, 2014, 658-61.		24
283	Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 138.	4.6	36
284	Blind source identification from the multichannel surface electromyogram. Physiological Measurement, 2014, 35, R143-R165.	2.1	121
285	HyVE—Hybrid Vibro-Electrotactile Stimulation—Is an Efficient Approach to Multi-Channel Sensory Feedback. IEEE Transactions on Haptics, 2014, 7, 181-190.	2.7	34
286	Taskâ€related changes in sensorimotor integration influence the common synaptic input to motor neurones. Acta Physiologica, 2014, 211, 229-239.	3.8	45
287	The extraction of neural strategies from the surface EMG: an update. Journal of Applied Physiology, 2014, 117, 1215-1230.	2.5	378
288	Accurate identification of motor unit discharge patterns from high-density surface EMG and validation with a novel signal-based performance metric. Journal of Neural Engineering, 2014, 11, 016008.	3.5	279

#	Article	IF	CITATIONS
289	Bionic Limbs: Clinical Reality and Academic Promises. Science Translational Medicine, 2014, 6, 257ps12.	12.4	117
290	Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-13.	1.3	45
291	Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. Journal of Neural Engineering, 2014, 11, 046001.	3.5	95
292	A non-parametric Bayesian approach for clustering and tracking non-stationarities of neural spikes. Journal of Neuroscience Methods, 2014, 223, 85-91.	2.5	11
293	Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Current Surgery Reports, 2014, 2, 1.	0.9	191
294	Human stretch reflex pathways reexamined. Journal of Neurophysiology, 2014, 111, 602-612.	1.8	19
295	Closed-Loop Control of Grasping With a Myoelectric Hand Prosthesis: Which Are the Relevant Feedback Variables for Force Control?. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 1041-1052.	4.9	132
296	Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications. IEEE Transactions on Biomedical Engineering, 2014, 61, 288-296.	4.2	168
297	A hybrid intelligent system for diagnosing microalbuminuria in type 2 diabetes patients without having to measure urinary albumin. Computers in Biology and Medicine, 2014, 45, 34-42.	7.0	35
298	Sequential Decoding of Intramuscular EMG Signals via Estimation of a Markov Model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 1030-1040.	4.9	17
299	Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. Journal of Biomechanics, 2014, 47, 3613-3621.	2.1	158
300	An Accurate, Versatile, and Robust Brain Switch for Neurorehabilitation. Springer Briefs in Electrical and Computer Engineering, 2014, , 47-61.	0.5	12
301	Is Accurate Mapping of EMG Signals on Kinematics Needed for Precise Online Myoelectric Control?. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 549-558.	4.9	177
302	HyVE: Hybrid Vibro-Electrotactile Stimulation for Sensory Feedback and Substitution in Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 290-301.	4.9	60
303	Extracting Signals Robust to Electrode Number and Shift for Online Simultaneous and Proportional Myoelectric Control by Factorization Algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 623-633.	4.9	145
304	Intuitive, Online, Simultaneous, and Proportional Myoelectric Control Over Two Degrees-of-Freedom in Upper Limb Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 501-510.	4.9	223
305	The effective neural drive to muscles is the common synaptic input to motor neurons. Journal of Physiology, 2014, 592, 3427-3441.	2.9	153
306	A state-based, proportional myoelectric control method: online validation and comparison with the clinical state-of-the-art. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 110.	4.6	28

#	Article	IF	CITATIONS
307	Detection of Movement Intentions through a Single Channel of Electroencephalography. Biosystems and Biorobotics, 2014, , 465-472.	0.3	6
308	Self-Correcting Pattern Recognition System of Surface EMG Signals for Upper Limb Prosthesis Control. IEEE Transactions on Biomedical Engineering, 2014, 61, 1167-1176.	4.2	163
309	A Closed-Loop Brain–Computer Interface Triggering an Active Ankle–Foot Orthosis for Inducing Cortical Neural Plasticity. IEEE Transactions on Biomedical Engineering, 2014, 61, 2092-2101.	4.2	137
310	Noninvasive, Accurate Assessment of the Behavior of Representative Populations of Motor Units in Targeted Reinnervated Muscles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 810-819.	4.9	42
311	The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 797-809.	4.9	725
312	Linear and Nonlinear Regression Techniques for Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 269-279.	4.9	298
313	Slipping during side-step cutting: Anticipatory effects and familiarization. Human Movement Science, 2014, 34, 128-136.	1.4	4
314	Multi-channel EMG recording and muscle stimulation electrodes for diagnosis and treatment of tremor. , 2014, , .		2
315	Manipulating measurement scales in medical statistical analysis and data mining: A review of methodologies. Journal of Research in Medical Sciences, 2014, 19, 47-56.	0.9	16
316	Detection of movement-related cortical potentials based on subject-independent training. Medical and Biological Engineering and Computing, 2013, 51, 507-512.	2.8	75
317	Effect of arm position on the prediction of kinematics from EMG in amputees. Medical and Biological Engineering and Computing, 2013, 51, 143-151.	2.8	97
318	Surface EMG pre-processing techniques for the detection of common input to motor neuron populations. , 2013, , .		6
319	Identification of common synaptic inputs to motor neurons from the rectified electromyogram. Journal of Physiology, 2013, 591, 2403-2418.	2.9	98
320	Motor unit recruitment by size does not provide functional advantages for motor performance. Journal of Physiology, 2013, 591, 6139-6156.	2.9	9
321	A signal-based approach for assessing the accuracy of high-density surface EMG decomposition. , 2013, ,		2
322	Neural correlates of task-related changes in physiological tremor. Journal of Neurophysiology, 2013, 110, 170-176.	1.8	18
323	A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Frontiers in Computational Neuroscience, 2013, 7, 79.	2.1	106
324	Comparison of movement related cortical potential in healthy people and amyotrophic lateral sclerosis patients. Frontiers in Neuroscience, 2013, 7, 65.	2.8	25

#	Article	IF	CITATIONS
325	Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: is recruitment intermittent? What triggers recruitment?. Journal of Neurophysiology, 2012, 107, 666-676.	1.8	55
326	Non-invasive characterization of motor unit behaviour in pathological tremor. Journal of Neural Engineering, 2012, 9, 056011.	3.5	78
327	Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness. Journal of Neurophysiology, 2012, 107, 3357-3369.	1.8	123
328	A Multimodal Human–Robot Interface to Drive a Neuroprosthesis for Tremor Management. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 1159-1168.	2.9	34
329	Changes in H reflex and V wave following short-term endurance and strength training. Journal of Applied Physiology, 2012, 112, 54-63.	2.5	90
330	Adjustments in Motor Unit Properties during Fatiguing Contractions after Training. Medicine and Science in Sports and Exercise, 2012, 44, 616-624.	0.4	41
331	Low-frequency oscillations of the neural drive to the muscle are increased with experimental muscle pain. Journal of Neurophysiology, 2012, 107, 958-965.	1.8	32
332	Myoelectric Control of Artificial Limbs—Is There a Need to Change Focus? [In the Spotlight]. IEEE Signal Processing Magazine, 2012, 29, 152-150.	5.6	275
333	Simultaneous and proportional control of 2D wrist movements with myoelectric signals. , 2012, , .		26
334	Real time simultaneous and proportional control of multiple degrees of freedom from surface EMG: Preliminary results on subjects with limb deficiency. , 2012, 2012, 1346-9.		27
335	Accessing the Neural Drive to Muscle and Translation to Neurorehabilitation Technologies. IEEE Reviews in Biomedical Engineering, 2012, 5, 3-14.	18.0	93
336	Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. Journal of Physiology, 2012, 590, 1669-1682.	2.9	210
337	EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 42.	4.6	152
338	Simultaneous and Proportional Estimation of Hand Kinematics From EMG During Mirrored Movements at Multiple Degrees-of-Freedom. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 371-378.	4.9	238
339	Peripheral Electrical Stimulation Triggered by Self-Paced Detection of Motor Intention Enhances Motor Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 595-604.	4.9	129
340	Multivariate pattern analysis of evoked brain potentials by temporal matching pursuit and support vector machine. Scandinavian Journal of Pain, 2012, 3, 194-194.	1.3	2
341	EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment about Multiple Degrees of Freedom in the Human Lower Extremity. PLoS ONE, 2012, 7, e52618.	2.5	239
342	Surface EMG crosstalk during phasic involuntary muscle activation in the nociceptive withdrawal reflex. Muscle and Nerve, 2012, 46, 228-236.	2.2	14

#	Article	IF	CITATIONS
343	Estimation of Grasping Force from Features of Intramuscular EMG Signals with Mirrored Bilateral Training. Annals of Biomedical Engineering, 2012, 40, 648-656.	2.5	64
344	Factors Influencing the Estimates of Correlation between Motor Unit Activities in Humans. PLoS ONE, 2012, 7, e44894.	2.5	73
345	Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training. IEEE Transactions on Biomedical Engineering, 2011, 58, 681-688.	4.2	212
346	Detection of movement intention from single-trial movement-related cortical potentials. Journal of Neural Engineering, 2011, 8, 066009.	3.5	208
347	Robust decomposition of single-channel intramuscular EMG signals at low force levels. Journal of Neural Engineering, 2011, 8, 066015.	3.5	30
348	EMG-Based Characterization of Pathological Tremor Using the Iterated Hilbert Transform. IEEE Transactions on Biomedical Engineering, 2011, 58, 2911-2921.	4.2	37
349	Reduced force steadiness in women with neck pain and the effect of short term vibration. Journal of Electromyography and Kinesiology, 2011, 21, 283-290.	1.7	43
350	Performance of a Simulated Adaptive BCI Based on Experimental Classification of Movement-Related and Error Potentials. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2011, 1, 480-488.	3.6	33
351	Assessment of the Electrophysiological Properties of the Muscle Fibers of a Transplanted Hand. Transplantation, 2011, 92, 1202-1207.	1.0	1
352	Surface EMG Decomposition Requires an Appropriate Validation. Journal of Neurophysiology, 2011, 105, 981-982.	1.8	57
353	Postural activation of the human medial gastrocnemius muscle: are the muscle units spatially localised?. Journal of Physiology, 2011, 589, 431-443.	2.9	97
354	Linear transmission of cortical oscillations to the neural drive to muscles is mediated by common projections to populations of motoneurons in humans. Journal of Physiology, 2011, 589, 629-637.	2.9	115
355	A Model of the Surface Electromyogram in Pathological Tremor. IEEE Transactions on Biomedical Engineering, 2011, 58, 2178-2185.	4.2	28
356	Spike Sorting by Stochastic Simulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 249-259.	4.9	16
357	Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 25.	4.6	131
358	Noninvasive analysis of motor unit behavior in pathological tremor. , 2011, 2011, 7512-5.		5
359	Neuromuscular adjustments that constrain submaximal EMG amplitude at task failure of sustained isometric contractions. Journal of Applied Physiology, 2011, 111, 485-494.	2.5	87
360	A modelling study on transmission of the central oscillator in tremor by a motor neuron pool. , 2011, 2011, 2011, 2037-40.		2

#	Article	IF	CITATIONS
361	Decorrelation of cortical inputs and motoneuron output. Journal of Neurophysiology, 2011, 106, 2688-2697.	1.8	64
362	Transmission of cortical oscillations to motoneuron output for force control. , 2011, , 35-37.		2
363	Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. Journal of Applied Physiology, 2010, 109, 1455-1466.	2.5	132
364	Identifying Representative Synergy Matrices for Describing Muscular Activation Patterns During Multidirectional Reaching in the Horizontal Plane. Journal of Neurophysiology, 2010, 103, 1532-1542.	1.8	150
365	Experimental Analysis of Accuracy in the Identification of Motor Unit Spike Trains From High-Density Surface EMG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 221-229.	4.9	183
366	High-density EMG E-Textile systems for the control of active prostheses. , 2010, 2010, 3591-3.		39
367	Decoding the neural drive to muscles from the surface electromyogram. Clinical Neurophysiology, 2010, 121, 1616-1623.	1.5	279
368	Effect of pain on the modulation in discharge rate of sternocleidomastoid motor units with force direction. Clinical Neurophysiology, 2010, 121, 744-753.	1.5	61
369	An integrative model of motor unit activity during sustained submaximal contractions. Journal of Applied Physiology, 2010, 108, 1550-1562.	2.5	53
370	Off line identification of imagined speed of wrist movements in paralyzed ALS patients from single-trial EEG. Frontiers in Neuroscience, 2009, 3, 62.	2.8	35
371	Analysis of intramuscular electromyogram signals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 357-368.	3.4	106
372	Identification of task parameters from movement-related cortical potentials. Medical and Biological Engineering and Computing, 2009, 47, 1257-1264.	2.8	44
373	Fluctuations in isometric muscle force can be described by one linear projection of lowâ€frequency components of motor unit discharge rates. Journal of Physiology, 2009, 587, 5925-5938.	2.9	236
374	Relationship between grasping force and features of single-channel intramuscular EMG signals. Journal of Neuroscience Methods, 2009, 185, 143-150.	2.5	63
375	Estimating motor unit discharge patterns from high-density surface electromyogram. Clinical Neurophysiology, 2009, 120, 551-562.	1.5	234
376	Adjustments Differ Among Low-Threshold Motor Units During Intermittent, Isometric Contractions. Journal of Neurophysiology, 2009, 101, 350-359.	1.8	61
377	Effect of muscleâ€fiber velocity recovery function on motor unit action potential properties in voluntary contractions. Muscle and Nerve, 2008, 37, 650-658.	2.2	20
378	Sympatheticâ€induced changes in discharge rate and spikeâ€triggered average twitch torque of lowâ€threshold motor units in humans. Journal of Physiology, 2008, 586, 5561-5574.	2.9	50

#	Article	IF	CITATIONS
379	Neuromuscular adaptation in experimental and clinical neck pain. Journal of Electromyography and Kinesiology, 2008, 18, 255-261.	1.7	118
380	Non-uniform electromyographic activity during fatigue and recovery of the vastus medialis and lateralis muscles. Journal of Electromyography and Kinesiology, 2008, 18, 390-396.	1.7	24
381	Analysis of motor units with high-density surface electromyography. Journal of Electromyography and Kinesiology, 2008, 18, 879-890.	1.7	246
382	The pain-induced decrease in low-threshold motor unit discharge rate is not associated with the amount of increase in spike-triggered average torque. Clinical Neurophysiology, 2008, 119, 43-51.	1.5	36
383	Counterpoint: Spectral properties of the surface emg do not provide information about motor unit recruitment and muscle fiber type. Journal of Applied Physiology, 2008, 105, 1673-1674.	2.5	57
384	Detecting the Unique Representation of Motor-Unit Action Potentials in the Surface Electromyogram. Journal of Neurophysiology, 2008, 100, 1223-1233.	1.8	153
385	Amplitude Cancellation of Motor-Unit Action Potentials in the Surface Electromyogram Can Be Estimated With Spike-Triggered Averaging. Journal of Neurophysiology, 2008, 100, 431-440.	1.8	61
386	Multichannel thin-film electrode for intramuscular electromyographic recordings. Journal of Applied Physiology, 2008, 104, 821-827.	2.5	69
387	Correlation of average muscle fiber conduction velocity measured during cycling exercise with myosin heavy chain composition, lactate threshold, and VO2max. Journal of Electromyography and Kinesiology, 2007, 17, 393-400.	1.7	43
388	Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. Journal of Neuroscience Methods, 2007, 162, 357-363.	2.5	92
389	Estimation of Muscle Fiber Conduction Velocity With a Spectral Multidip Approach. IEEE Transactions on Biomedical Engineering, 2007, 54, 1583-1589.	4.2	33
390	Amplitude cancellation reduces the size of motor unit potentials averaged from the surface EMG. Journal of Applied Physiology, 2006, 100, 1928-1937.	2.5	100
391	A Finite Element Model for Describing the Effect of Muscle Shortening on Surface EMG. IEEE Transactions on Biomedical Engineering, 2006, 53, 593-600.	4.2	62
392	Effect of temperature on spike-triggered average torque and electrophysiological properties of low-threshold motor units. Journal of Applied Physiology, 2005, 99, 197-203.	2.5	51
393	Conduction velocity of low-threshold motor units during ischemic contractions performed with surface EMG feedback. Journal of Applied Physiology, 2005, 98, 1487-1494.	2.5	15
394	Sensitivity of surface EMG-based conduction velocity estimates to local tissue in-homogeneities – influence of the number of channels and inter-channel distance. Journal of Neuroscience Methods, 2005, 142, 83-89.	2.5	19
395	Experimental muscle pain changes motor control strategies in dynamic contractions. Experimental Brain Research, 2005, 164, 215-224.	1.5	74
396	Experimental muscle pain reduces initial motor unit discharge rates during sustained submaximal contractions. Journal of Applied Physiology, 2005, 98, 999-1005.	2.5	66

#	Article	IF	CITATIONS
397	Influence of amplitude cancellation on the simulated surface electromyogram. Journal of Applied Physiology, 2005, 98, 120-131.	2.5	324
398	Decomposition of Intramuscular EMG Signals. , 2005, , 47-80.		4
399	Biophysics of the Generation of EMG Signals. , 2005, , 81-105.		34
400	Single-Channel Techniques for Information Extraction from the Surface EMG Signal. , 2005, , 133-168.		17
401	Multi-Channel Techniques for Information Extraction from the Surface EMG. , 2005, , 169-203.		3
402	Myoelectric Manifestations of Muscle Fatigue. , 2005, , 233-258.		21
403	Surface EMG Crosstalk Evaluated from Experimental Recordings and Simulated Signals. Methods of Information in Medicine, 2004, 43, 30-35.	1.2	78
404	Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. Journal of Applied Physiology, 2004, 97, 2035-2041.	2.5	77
405	A Surface EMG Generation Model With Multilayer Cylindrical Description of the Volume Conductor. IEEE Transactions on Biomedical Engineering, 2004, 51, 415-426.	4.2	186
406	Simulation of Surface EMG Signals Generated by Muscle Tissues With Inhomogeneity Due to Fiber Pinnation. IEEE Transactions on Biomedical Engineering, 2004, 51, 1521-1529.	4.2	46
407	Assessment of Average Muscle Fiber Conduction Velocity From Surface EMG Signals During Fatiguing Dynamic Contractions. IEEE Transactions on Biomedical Engineering, 2004, 51, 1383-1393.	4.2	111
408	Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Medical and Biological Engineering and Computing, 2004, 42, 432-445.	2.8	137
409	Advances in surface electromyographic signal simulation with analytical and numerical descriptions of the volume conductor. Medical and Biological Engineering and Computing, 2004, 42, 467-476.	2.8	35
410	Comparison of spatial filter selectivity in surface myoelectric signal detection: Influence of the volume conductor model. Medical and Biological Engineering and Computing, 2004, 42, 114-120.	2.8	38
411	Reproducibility of muscle-fiber conduction velocity estimates using multichannel surface EMG techniques. Muscle and Nerve, 2004, 29, 282-291.	2.2	42
412	Muscle-fiber conduction velocity estimated from surface emg signals during explosive dynamic contractions. Muscle and Nerve, 2004, 29, 823-833.	2.2	38
413	Estimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings. Journal of Neuroscience Methods, 2004, 134, 199-208.	2.5	58
414	The extraction of neural strategies from the surface EMG. Journal of Applied Physiology, 2004, 96, 1486-1495.	2.5	1,166

#	Article	IF	CITATIONS
415	M-wave properties during progressive motor unit activation by transcutaneous stimulation. Journal of Applied Physiology, 2004, 97, 545-555.	2.5	52
416	Effect of Experimental Muscle Pain on Motor Unit Firing Rate and Conduction Velocity. Journal of Neurophysiology, 2004, 91, 1250-1259.	1.8	172
417	Selectivity of spatial filters for surface EMG detection from the tibialis anterior muscle. IEEE Transactions on Biomedical Engineering, 2003, 50, 354-364.	4.2	59
418	The linear electrode array: a useful tool with many applications. Journal of Electromyography and Kinesiology, 2003, 13, 37-47.	1.7	234
419	Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects. Journal of Electromyography and Kinesiology, 2003, 13, 319-332.	1.7	95
420	Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization. Journal of Applied Physiology, 2002, 93, 1753-1763.	2.5	170
421	Motor unit recruitment strategies investigated by surface EMG variables. Journal of Applied Physiology, 2002, 92, 235-247.	2.5	237
422	Surface EMG crosstalk between knee extensor muscles: Experimental and model results. Muscle and Nerve, 2002, 26, 681-695.	2.2	161
423	Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle. European Journal of Applied Physiology, 2002, 86, 469-478.	2.5	136
424	Influence of anatomical, physical, and detection-system parameters on surface EMG. Biological Cybernetics, 2002, 86, 445-456.	1.3	296
425	Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging. Journal of Neuroscience Methods, 2002, 115, 1-12.	2.5	126
426	Evaluation of intra-muscular EMG signal decomposition algorithms. Journal of Electromyography and Kinesiology, 2001, 11, 175-187.	1.7	56
427	Surface Electromyography for Noninvasive Characterization of Muscle. Exercise and Sport Sciences Reviews, 2001, 29, 20-25.	3.0	227
428	A novel approach for joint estimation of time delay and scale factor with applications to the M-wave analysis. , 2001, , .		1
429	Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays. Medical and Biological Engineering and Computing, 2001, 39, 225-236.	2.8	171
430	A model for the generation of synthetic intramuscular EMG signals to test decomposition algorithms. IEEE Transactions on Biomedical Engineering, 2001, 48, 66-77.	4.2	59
431	A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Transactions on Biomedical Engineering, 2001, 48, 637-646.	4.2	229
432	Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Transactions on Biomedical Engineering, 2001, 48, 1326-1334.	4.2	87

#	Article	IF	CITATIONS
433	Effect of electrode shape on spectral features of surface detected motor unit action potentials. Acta Physiologica Et Pharmacologica Bulgarica, 2001, 26, 63-6.	0.1	6
434	Noninvasive estimation of motor unit conduction velocity distribution using linear electrode arrays. IEEE Transactions on Biomedical Engineering, 2000, 47, 380-388.	4.2	140
435	Geometrical factors in surface EMG of the vastus medialis and lateralis muscles. Journal of Electromyography and Kinesiology, 2000, 10, 327-336.	1.7	158
436	Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. Journal of Electromyography and Kinesiology, 2000, 10, 337-349.	1.7	279
437	Compensation of the effect of sub-cutaneous tissue layers on surface EMG: a simulation study. Medical Engineering and Physics, 1999, 21, 487-497.	1.7	111
438	The control and training of single motor units in isometric tasks are constrained by a common input signal. ELife, 0, 11, .	6.0	16
439	Mathematical relationships between spinal motoneuron properties. ELife, 0, 11, .	6.0	14