Zhiwen Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6167496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygenâ€Vacancy Abundant Ultrafine Co ₃ O ₄ /Graphene Composites for Highâ€Rate Supercapacitor Electrodes. Advanced Science, 2018, 5, 1700659.	11.2	392
2	Leadâ€free mesoscopic Cs ₂ SnI ₆ perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Physica Status Solidi - Rapid Research Letters, 2016, 10, 587-591.	2.4	138
3	Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. Journal of Materials Chemistry C, 2017, 5, 7084-7094.	5.5	134
4	Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties. Nanophotonics, 2017, 6, 259-267.	6.0	106
5	Friction and wear properties of ZrO2/SiO2 composite nanoparticles. Journal of Nanoparticle Research, 2011, 13, 2129-2137.	1.9	96
6	Zinc as a New Dopant for NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells with Stable Efficiency near 20%. ACS Applied Energy Materials, 2018, 1, 3947-3954.	5.1	87
7	Effect of deposition temperature on transparent conductive properties of γ-Cul film prepared by vacuum thermal evaporation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1466-1470.	1.8	68
8	Tellurium-Based Double Perovskites A ₂ TeX ₆ with Tunable Band Gap and Long Carrier Diffusion Length for Optoelectronic Applications. ACS Energy Letters, 2019, 4, 228-234.	17.4	58
9	Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors. Journal of Power Sources, 2021, 484, 229221.	7.8	48
10	Perovskite films grown with green mixed anti-solvent for highly efficient solar cells with enhanced stability. Solar Energy, 2019, 181, 285-292.	6.1	41
11	Laser-induced reshaping of particles aiming at energy-saving applications. Journal of Materials Chemistry, 2012, 22, 15947.	6.7	39
12	Flexible and Biocompatibility Power Source for Electronics: A Cellulose Paper Based Holeâ€Transportâ€Materialsâ€Free Perovskite Solar Cell. Solar Rrl, 2018, 2, 1800175.	5.8	37
13	Smooth and solid WS ₂ submicrospheres grown by a new laser fragmentation and reshaping process with enhanced tribological properties. Chemical Communications, 2016, 52, 10147-10150.	4.1	33
14	Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer. New Journal of Chemistry, 2019, 43, 7130-7135.	2.8	31
15	Sealing the domain boundaries and defects passivation by Poly(acrylic acid) for scalable blading of efficient perovskite solar cells. Journal of Power Sources, 2019, 426, 188-196.	7.8	29
16	Construction of hollow Co ₃ O ₄ cubes as a high-performance anode for lithium ion batteries. New Journal of Chemistry, 2017, 41, 7960-7965.	2.8	28
17	Highly conductive n-type CH ₃ NH ₃ PbI ₃ single crystals doped with bismuth donors. Journal of Materials Chemistry C, 2020, 8, 3694-3704.	5.5	27
18	Zwitterion-Stabilizing Scalable Bladed α-Phase Cs _{0.1} FA _{0.9} PbI ₃ Films for Efficient Inverted Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 7020-7030.	6.7	27

Zhiwen Qiu

#	Article	IF	CITATIONS
19	Sodiumâ€Doped ZnO Nanowires Grown by Highâ€pressure <scp>PLD</scp> and their Acceptorâ€Related Optical Properties. Journal of the American Ceramic Society, 2014, 97, 2177-2184.	3.8	26
20	3D hierarchical Co ₃ O ₄ microspheres with enhanced lithium-ion battery performance. RSC Advances, 2015, 5, 61631-61638.	3.6	25
21	Two-dimensional porous Co ₃ O ₄ nanosheets for high-performance lithium ion batteries. New Journal of Chemistry, 2017, 41, 15283-15288.	2.8	25
22	Green laser irradiation-stimulated fullerene-like MoS2 nanospheres for tribological applications. Tribology International, 2018, 122, 119-124.	5.9	23
23	The Influence of Physical Properties of ZnO Films on the Efficiency of Planar ZnO/Perovskite/P3HT Solar Cell. Journal of the American Ceramic Society, 2017, 100, 176-184.	3.8	22
24	From energy harvesting to topologically insulating behavior: ABO ₃ -type epitaxial thin films and superlattices. Journal of Materials Chemistry C, 2020, 8, 15575-15596.	5.5	22
25	High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 22238-22245.	8.0	19
26	Highly Conductive P-Type MAPbI3 Films and Crystals via Sodium Doping. Frontiers in Chemistry, 2020, 8, 754.	3.6	18
27	Corncob-Derived Hierarchical Porous Activated Carbon for High-Performance Lithium-Ion Capacitors. Energy & Fuels, 2020, 34, 16885-16892.	5.1	15
28	Morphology Evolution of ZnO Submicroparticles Induced by Laser Irradiation and Their Enhanced Tribology Properties by Compositing with Al ₂ O ₃ Nanoparticles. Advanced Engineering Materials, 2015, 17, 341-348.	3.5	14
29	Corncob-derived hierarchical porous carbons constructed by re-activation for high-rate lithium-ion capacitors. New Journal of Chemistry, 2019, 43, 10103-10108.	2.8	10
30	Excess iodine as the interface recombination center limiting the open-circuit voltage of Cul-based perovskite planar solar cell. Journal of Materials Science: Materials in Electronics, 2018, 29, 8838-8846.	2.2	9
31	Growth temperature-dependent performance of planar CH ₃ NH ₃ PbI ₃ solar cells fabricated by a two-step subliming vapor method below 120 ŰC. RSC Advances, 2016, 6, 47459-47467.	3.6	7
32	Threeâ€Dimensional Mesoporous Strawâ€like Co 3 O 4 Anode with Enhanced Electrochemical Performance for Lithiumâ€lon Batteries. ChemistrySelect, 2019, 4, 6879-6885.	1.5	7
33	Hierarchical Co ₃ O ₄ Nanowires as Binder Free Electrodes for Reversible Lithium Storage. Chinese Journal of Chemistry, 2016, 34, 631-636.	4.9	6
34	Enhancing the bulk photovoltaic effect by tuning domain walls in epitaxial BiFeO ₃ films. Nanotechnology, 2021, 32, 495402.	2.6	5
35	An ultrahigh 84.3% fill factor for efficient CH3NH3PbI3 P-i-N perovskite film solar cell. Solar Energy, 2022, 233, 271-277.	6.1	5
36	Copper submicrospheres induced by pulsed laser-irradiation with enhanced tribology properties. New Journal of Chemistry, 2019, 43, 13526-13535.	2.8	4

Zhiwen Qiu

#	Article	IF	CITATIONS
37	Impact of Ferroelectric Domain Structure on Bulk Photovoltaic Effect of Epitaxial BiFe _{1â^'} <i>_x</i> Co <i>_x</i> O ₃ Films. Advanced Electronic Materials, 2022, 8, .	5.1	3
38	Tribology Properties: Laser Irradiationâ€Induced SiC@Graphene Subâ€Microspheres: A Bioinspired Core–Shell Structure for Enhanced Tribology Properties (Adv. Mater. Interfaces 5/2018). Advanced Materials Interfaces, 2018, 5, 1870021.	3.7	2
39	Zn1â^'x Mg x O (0≤â‰0.05) nanowalls grown on catalyst-free sapphire substrates by high-pressure PLD and their photoluminescence properties. Applied Physics A: Materials Science and Processing, 2013, 111, 1119-1124.	2.3	1
40	Dopant compensation in p-type doped MAPb _{1â^'} _{<i>x</i>} Cu _{<i>x</i>} I ₃ alloyed perovskite crystals. Applied Physics Letters, 2022, 121, 012102.	3.3	0