
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6166437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Langmuir monolayers to study interactions at model membrane surfaces. Advances in Colloid and Interface Science, 2003, 100-102, 563-584.	14.7	246
2	Langmuir monolayers as models to study processes at membrane surfaces. Advances in Colloid and Interface Science, 2014, 208, 197-213.	14.7	190
3	Influence of ether linkages on the structure of double-chain phospholipid monolayers. Chemistry and Physics of Lipids, 1995, 76, 145-157.	3.2	154
4	The interaction of antimicrobial peptides with membranes. Advances in Colloid and Interface Science, 2017, 247, 521-532.	14.7	134
5	Langmuir monolayers as unique physical models. Current Opinion in Colloid and Interface Science, 2014, 19, 176-182.	7.4	118
6	DNA Condensation and Interaction with Zwitterionic Phospholipids Mediated by Divalent Cations. Langmuir, 2006, 22, 6293-6301.	3.5	110
7	Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophysical Chemistry, 2008, 137, 35-42.	2.8	106
8	Adsorption of Amyloid \hat{I}^2 (1-40) Peptide at Phospholipid Monolayers. ChemBioChem, 2005, 6, 1817-1824.	2.6	99
9	Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chemistry, 2014, 6, 468-476.	13.6	97
10	NSAIDs Interactions with Membranes: A Biophysical Approach. Langmuir, 2011, 27, 10847-10858.	3.5	87
11	Changes in Model Lung Surfactant Monolayers Induced by Palmitic Acid. Langmuir, 2001, 17, 4641-4648.	3.5	83
12	Binding of Nonsteroidal Anti-inflammatory Drugs to DPPC:  Structure and Thermodynamic Aspects. Langmuir, 2008, 24, 4132-4139.	3.5	77
13	Synthesis, calorimetry, and X-ray diffraction of lecithins containing branched fatty acid chains. Chemistry and Physics of Lipids, 1986, 39, 221-236.	3.2	75
14	Polyelectrolyte Coupling to a Charged Lipid Monolayer. Macromolecules, 1997, 30, 2337-2342.	4.8	74
15	Adsorption of Amyloid Beta (1-40) Peptide to Phosphatidylethanolamine Monolayers. ChemPhysChem, 2004, 5, 1185-1190.	2.1	73
16	Rationale for the Design of Shortened Derivatives of the NK-lysin-derived Antimicrobial Peptide NK-2 with Improved Activity against Gram-negative Pathogens. Journal of Biological Chemistry, 2007, 282, 14719-14728.	3.4	72
17	Breakdown of the Gouyâ^'Chapman Model for Highly Charged Langmuir Monolayers:Â Counterion Size Effect. Journal of Physical Chemistry B, 2006, 110, 10032-10040.	2.6	71
18	Molecular Organization of the Tear Fluid Lipid Layer. Biophysical Journal, 2010, 99, 2559-2567.	0.5	67

#	Article	IF	CITATIONS
19	Elemental Analysis within the Electrical Double Layer Using Total Reflection X-ray Fluorescence Technique. Journal of Physical Chemistry B, 2007, 111, 3927-3934.	2.6	59
20	X-ray investigation of monolayers formed at the soft air/water interface. Current Opinion in Colloid and Interface Science, 2014, 19, 216-227.	7.4	57
21	DNA Alignment at Cationic Lipid Monolayers at the Air/Water Interface. Macromolecules, 2004, 37, 3865-3873.	4.8	56
22	Lipid–Drug Interaction: Biophysical Effects of Tolmetin on Membrane Mimetic Systems of Different Dimensionality. Journal of Physical Chemistry B, 2011, 115, 12615-12623.	2.6	52
23	Ionization State and Structure ofl-1,2-Dipalmitoylphosphatidylglycerol Monolayers at the Liquid/Air Interface. Journal of Physical Chemistry B, 2006, 110, 919-926.	2.6	51
24	Photosensitive surfactants: Micellization and interaction with DNA. Journal of Chemical Physics, 2014, 140, 044906.	3.0	50
25	Dipalmitoyl-Phosphatidylcholine/Phospholipase D Interactions Investigated with Polarization-Modulated Infrared Reflection Absorption Spectroscopy. Biophysical Journal, 2001, 80, 749-754.	0.5	49
26	Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against <i>Escherichia coli</i> and <i>Proteus mirabilis</i> . Biochemical Journal, 2010, 427, 477-488.	3.7	48
27	Domain formation in monolayers. Molecular Membrane Biology, 1995, 12, 29-38.	2.0	47
28	Influence of Pulmonary Surfactant Protein B on Model Lung Surfactant Monolayers. Langmuir, 2002, 18, 2319-2325.	3.5	47
29	The protective effect of free and membrane-bound cryoprotectants during freezing and freeze-drying of liposomes. Journal of Controlled Release, 1994, 30, 105-116.	9.9	45
30	Dynamic Observations of the Hydrolysis of a DPPC Monolayer at the Air/Water Interface Catalyzed by Phospholipaseâ€A2. Angewandte Chemie - International Edition, 2000, 39, 3059-3062.	13.8	43
31	Interactions of a Fungistatic Antibiotic, Griseofulvin, with Phospholipid Monolayers Used as Models of Biological Membranes. Langmuir, 2006, 22, 7701-7711.	3.5	43
32	Controlling Amyloidâ€Ĥ² Peptide(1–42) Oligomerization and Toxicity by Fluorinated Nanoparticles. ChemBioChem, 2010, 11, 1905-1913.	2.6	42
33	Synchrotron SAXS and WAXS Study of the Interactions of NSAIDs with Lipid Membranes. Journal of Physical Chemistry B, 2011, 115, 8024-8032.	2.6	42
34	Triggers for β-Sheet Formation at the Hydrophobic–Hydrophilic Interface: High Concentration, In-Plane Orientational Order, and Metal Ion Complexation. Langmuir, 2011, 27, 14218-14231.	3.5	42
35	From Langmuir Monolayers to Multilayer Films. Langmuir, 2016, 32, 10445-10458.	3.5	42
36	Lightâ€Induced Water Splitting Causes Highâ€Amplitude Oscillation of pHâ€Sensitive Layerâ€byâ€Layer Asseml on TiO ₂ . Angewandte Chemie - International Edition, 2016, 55, 13001-13004.	olies 13.8	42

3

#	Article	IF	CITATIONS
37	Characterization of Peptide-Guided Polymer Assembly at the Air/Water Interface. Langmuir, 2008, 24, 3306-3316.	3.5	41
38	Polyoxometalate Surfactants as Unique Molecules for Interfacial Self-Assembly. Journal of Physical Chemistry Letters, 2012, 3, 322-326.	4.6	41
39	Structural Analysis of a Metallosupramolecular Polyelectrolyte-Amphiphile Complex at the Air/Water Interface. Chemistry - A European Journal, 2001, 7, 1646-1651.	3.3	40
40	The impact of lipid composition on the stability of the tear fluid lipid layer. Soft Matter, 2012, 8, 5826.	2.7	40
41	Generic Phase Behavior of Branched-Chain Phospholipid Monolayers. Chemistry - A European Journal, 2002, 8, 3203.	3.3	39
42	Adsorption of Amyloid β-Peptide at Polymer Surfaces: A Neutron Reflectivity Study. ChemPhysChem, 2005, 6, 2527-2534.	2.1	39
43	The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 396-407.	4.3	38
44	Phase diagrams of pseudo-binary phospholipid systems I. Influence of the chain length differences on the miscibility properties of cephaline/cephaline/water systems. Chemistry and Physics of Lipids, 1988, 48, 245-254.	3.2	37
45	Effect of Sugars and Dimethyl Sulfoxide on the Structure and Phase Behavior of DPPC Monolayers. Langmuir, 2001, 17, 1209-1214.	3.5	37
46	Subgel Phase Structure in Monolayers of Glycosylphosphatidylinositol Glycolipids. Angewandte Chemie - International Edition, 2012, 51, 12874-12878.	13.8	37
47	Interaction between phospholipids and new Gemini catanionic surfactants having anti-HIV activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 228, 3-16.	4.7	36
48	Disorder in Langmuir Monolayers:  2. Relation between Disordered Alkyl Chain Packing and the Loss of Long-Range Tilt Orientational Order. Langmuir, 1999, 15, 2901-2910.	3.5	35
49	Adsorption of DNA to zwitterionic DMPE monolayers mediated by magnesium ions. Physical Chemistry Chemical Physics, 2004, 6, 5551.	2.8	35
50	Structural Changes of Phospholipid Monolayers Caused by Coupling of Human Serum Albumin:  A GIXD Study at the Air/Water Interface. Journal of Physical Chemistry B, 2004, 108, 14171-14177.	2.6	35
51	Modifying Calf Lung Surfactant by Hexadecanol. Langmuir, 2005, 21, 1028-1035.	3.5	35
52	Randomization of Amyloidâ€Î²â€Peptide(1â€42) Conformation by Sulfonated and Sulfated Nanoparticles Reduces Aggregation and Cytotoxicity. Macromolecular Bioscience, 2010, 10, 1152-1163.	4.1	35
53	pHâ€Responsive Selfâ€Organization of Metalâ€Binding Protein Motifs from Biomolecular Junctions in Mussel Byssus. Advanced Materials Interfaces, 2017, 4, 1600416.	3.7	35
54	Grazing incidence X-ray diffraction studies of condensed double-chain phospholipid monolayers formed at the soft air/water interface. Advances in Colloid and Interface Science, 2014, 207, 265-279.	14.7	34

#	Article	IF	CITATIONS
55	Vesicle Origami and the Influence of Cholesterol on Lipid Packing. Langmuir, 2016, 32, 4896-4903.	3.5	32
56	Influence of α-branched fatty acid chains on the thermotropic behaviours of 1-O-acyl-2-O-hexadecyl-glycerophosphocholines. Chemistry and Physics of Lipids, 1987, 43, 257-264.	3.2	31
57	Separation of Enantiomers in a Monolayer of Racemic 3â€Hexadecylâ€oxyâ€propaneâ€1,2â€diol. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 1394-1398.	0.9	31
58	Influence of Surface Properties of Mixed Monolayers on Lipolytic Hydrolysis. Langmuir, 2000, 16, 2779-2788.	3.5	29
59	Analytical Investigation of the Interactions between SC3 Hydrophobin and Lipid Layers:Â Elaborating of Nanostructured Matrixes for Immobilizing Redox Systems. Analytical Chemistry, 2006, 78, 4850-4864.	6.5	29
60	Mixed DPPC/DPTAP Monolayers at the Air/Water Interface: Influence of Indolilo-3-acetic Acid and Selenate Ions on the Monolayer Morphology. Langmuir, 2011, 27, 10886-10893.	3.5	29
61	Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Templateâ€Free Selfâ€Assembly. Angewandte Chemie - International Edition, 2017, 56, 6515-6518.	13.8	29
62	Polymer-capped magnetite nanoparticles change the 2D structure of DPPC model membranes. Soft Matter, 2012, 8, 7952.	2.7	28
63	Investigation of the Protonation State of Novel Cationic Lipids Designed for Gene Transfection. Journal of Physical Chemistry B, 2007, 111, 13845-13850.	2.6	27
64	Impact of the long chain ω-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chemistry and Physics of Lipids, 2010, 163, 42-50.	3.2	27
65	Headgroup-Ordered Monolayers of Uncharged Glycolipids Exhibit Selective Interactions with Ions. Journal of Physical Chemistry Letters, 2019, 10, 1684-1690.	4.6	27
66	Hexagonal Columnar. <i>cis, cis</i> -(3,5-dihydroxycyclohexyl)-3,4,5-tris(alkoxy)benzoates Thermal behaviour and water absorption. Liquid Crystals, 1991, 10, 169-183.	2.2	26
67	Miscibility of DPPC and DPPA in monolayers at the air/water interface. Chemistry and Physics of Lipids, 2004, 131, 71-80.	3.2	26
68	Langmuir and Langmuir-Blodgett Films of Metallosupramolecular Polyelectrolyte-Amphiphile Complexes. Langmuir, 2005, 21, 5901-5906.	3.5	26
69	Modifying dipalmitoylphosphatidylcholine monolayers by n-hexadecanol and dipalmitoylglycerol. Chemistry and Physics of Lipids, 2007, 145, 119-127.	3.2	26
70	Novel Cationic Lipids Based on Malonic Acid Amides Backbone: Transfection Efficacy and Cell Toxicity Properties. Bioconjugate Chemistry, 2010, 21, 696-708.	3.6	26
71	Effects of non-steroidal anti-inflammatory drugs on the structure of lipid bilayers: therapeutical aspects. Soft Matter, 2011, 7, 3002.	2.7	26
72	Bilayer Properties of 1,3-Diamidophospholipids. Langmuir, 2015, 31, 1879-1884.	3.5	26

#	Article	IF	CITATIONS
73	Structure features and phase behaviour of amphiphilic N-tetradecyl-β-hydroxy-propionic acid amide monolayers. Supramolecular Science, 1997, 4, 391-397.	0.7	25
74	Biocompatible Magnetite Nanoparticles Trapped at the Air/Water Interface. ChemPhysChem, 2010, 11, 3585-3588.	2.1	25
75	The Influence of Rifabutin on Human and Bacterial Membrane Models: Implications for Its Mechanism of Action. Journal of Physical Chemistry B, 2013, 117, 6187-6193.	2.6	25
76	In-Plane Structures of Synthetic Oligolactose Lipid Monolayers-Impact of Saccharide Chain Length. ChemPhysChem, 2003, 4, 1316-1322.	2.1	24
77	Penetration of the Antimicrobial Peptide Dicynthaurin into Phospholipid Monolayers at the Liquid–Air Interface. ChemBioChem, 2007, 8, 1038-1047.	2.6	24
78	Physical–Chemical Properties and Transfection Activity of Cationic Lipid/DNA Complexes. ChemPhysChem, 2009, 10, 2471-2479.	2.1	24
79	The energy-dispersive reflectometer/diffractometer at BESSY-I. Measurement Science and Technology, 1999, 10, 354-361.	2.6	23
80	Hydrolysis Reaction Analysis ofl-α-Distearoylphosphatidylcholine Monolayer Catalyzed by Phospholipase A2with Polarization-Modulated Infrared Reflection Absorption Spectroscopy. Langmuir, 2005, 21, 1051-1054.	3.5	23
81	Structure of the Langmuir Monolayers with Fluorinated Ethyl Amide and Ethyl Ester Polar Heads Creating Dipole Potentials of Opposite Sign. Langmuir, 2008, 24, 8001-8007.	3.5	23
82	Crystalline Amyloid Structures at Interfaces. Angewandte Chemie - International Edition, 2009, 48, 5005-5009.	13.8	23
83	Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration. Molecular Pharmaceutics, 2018, 15, 642-651.	4.6	23
84	Thermodynamics and Structures of Amide Phospholipid Monolayers. Journal of Physical Chemistry B, 2004, 108, 13475-13480.	2.6	22
85	Interfacial properties and structural analysis of the antimicrobial peptide NKâ€2. Journal of Peptide Science, 2008, 14, 510-517.	1.4	22
86	Physical–chemical characterization of novel cationic transfection lipids and the binding of model DNA at the air–water interface. Soft Matter, 2011, 7, 10162.	2.7	22
87	CaCO ₃ Mineralization under β-Sheet Forming Peptide Monolayers. Crystal Growth and Design, 2012, 12, 2299-2305.	3.0	22
88	Structure of octadecanol monolayers: An x-ray diffraction study. Journal of Chemical Physics, 1998, 109, 2006-2010.	3.0	21
89	Influence of model membrane structure on phospholipase D activity. Physical Chemistry Chemical Physics, 2000, 2, 4600-4604.	2.8	21
90	Langmuir and Gibbs Magnetite NP Layers at the Air/Water Interface. Langmuir, 2011, 27, 1192-1199.	3.5	21

#	Article	IF	CITATIONS
91	Conformational induced behaviour of copolymer-capped magnetite nanoparticles at the air/water interface. Soft Matter, 2011, 7, 4267.	2.7	21
92	Peptide–surfactant interactions: Consequences for the amyloid-beta structure. Biochemical and Biophysical Research Communications, 2012, 420, 136-140.	2.1	21
93	Physicochemical Investigation of a Lipid with a New Core Structure for Gene Transfection:Â 2-Amino-3-hexadecyloxy-2-(hexadecyloxymethyl)propan-1-ol. Langmuir, 2007, 23, 3919-3926.	3.5	20
94	Do unsaturated phosphoinositides mix with ordered phosphadidylcholine model membranes?. Journal of Lipid Research, 2008, 49, 1918-1925.	4.2	20
95	The formation of lipid bilayers on surfaces. Colloids and Surfaces B: Biointerfaces, 2009, 74, 477-483.	5.0	20
96	Chiral Textures inside 2D Achiral Domains. Journal of the American Chemical Society, 2011, 133, 19028-19031.	13.7	20
97	Monolayer Properties of 1,3-Diamidophospholipids. Langmuir, 2013, 29, 9428-9435.	3.5	20
98	Amphiphilic Cationic β3R3-Peptides: Membrane Active Peptidomimetics and Their Potential as Antimicrobial Agents. Biomacromolecules, 2014, 15, 1687-1695.	5.4	20
99	Influence of α-branched fatty acid chains on the thermotropic behaviour of racemic 1-O-hexadecyl-2-acyl-glycero-3phosphocholines. Chemistry and Physics of Lipids, 1995, 75, 81-91.	3.2	19
100	Direct Observations of the Cleavage Reaction of an L-DPPC Monolayer Catalyzed by Phospholipase A2 and Inhibited by an Indole Inhibitor at the Air/Water Interface. ChemBioChem, 2003, 4, 299-305.	2.6	19
101	Evidence for a Reverse U-Shaped Conformation of Single-Chain Bolaamphiphiles at the Airâ^'Water Interface. Langmuir, 2007, 23, 6063-6069.	3.5	19
102	Liquid–liquid immiscibility in model membranes activates secretory phospholipase A2. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 166-174.	2.6	19
103	Use of Total Reflection X-ray Fluorescence (TRXF) for the Quantification of DNA Binding to Lipid Monolayers at the Airâ^'Water Interface. Langmuir, 2010, 26, 14766-14773.	3.5	19
104	Structure–Function Relationships of New Lipids Designed for DNA Transfection. ChemPhysChem, 2011, 12, 2328-2337.	2.1	19
105	On the Interaction between Digitonin and Cholesterol in Langmuir Monolayers. Langmuir, 2016, 32, 9064-9073.	3.5	19
106	Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. European Journal of Pharmaceutical Sciences, 2021, 157, 105620.	4.0	19
107	Separation of enantiomers in a diol monolayer studied by fluorescence microscopy and grazing incidence X-ray diffraction. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1487-1492.	0.4	18
108	Phospholipase D Activity Is Regulated by Product Segregation and the Structure Formation of Phosphatidic Acid within Model Membranes. Biophysical Journal, 2007, 93, 2373-2383.	0.5	18

#	Article	IF	CITATIONS
109	Rigid Urea and Self-Healing Thiourea Ethanolamine Monolayers. Langmuir, 2015, 31, 1296-1302.	3.5	18
110	Composites of malonic acid diamides and phospholipids — Impact of lipoplex stability on transfection efficiency. Journal of Controlled Release, 2015, 220, 295-307.	9.9	18
111	Immobilization of 2-Deoxy- <scp>d</scp> -ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir–Schaefer Technique. ACS Applied Materials & Interfaces, 2017, 9, 8317-8326.	8.0	18
112	Investigating lons at Amphiphilic Monolayers with X-ray Fluorescence. Langmuir, 2019, 35, 8531-8542.	3.5	18
113	Influence of side-chain length on phospholipid ordering in two dimensions. Chemistry and Physics of Lipids, 1998, 94, 251-260.	3.2	17
114	Impact of Aluminum on the Oxidation of Lipids and Enzymatic Lipolysis in Monomolecular Films at the Air/Water Interface. Langmuir, 2007, 23, 3338-3348.	3.5	17
115	Influence of Cadmium and Selenate on the Interactions between Hormones and Phospholipids. Langmuir, 2009, 25, 13071-13076.	3.5	17
116	Control of the Lateral Organization in Langmuir Monolayers via Molecular Aggregation of Dyes. Journal of Physical Chemistry C, 2010, 114, 16685-16695.	3.1	17
117	Stimuli-Responsive Magnetite Nanoparticle Monolayers. Journal of Physical Chemistry C, 2011, 115, 5478-5484.	3.1	17
118	Modeling the influence of adsorbed DNA on the lateral pressure and tilt transition of a zwitterionic lipid monolayer. Physical Chemistry Chemical Physics, 2012, 14, 10613.	2.8	17
119	Surface activity and structures of two fragments of the human antimicrobial LL-37. Colloids and Surfaces B: Biointerfaces, 2013, 109, 129-135.	5.0	17
120	Composites of malonic acid diamides and phospholipids - Structural parameters for optimal transfection efficiency in A549 cells. European Journal of Lipid Science and Technology, 2014, 116, 1184-1194.	1.5	17
121	Malonic acid based cationic lipids – The way to highly efficient DNA-carriers. Advances in Colloid and Interface Science, 2017, 248, 20-34.	14.7	17
122	Phase Transitions and Structures in Monolayers of Water Soluble and Insoluble Amphiphilic Acid Amides. Chemical Engineering and Technology, 1998, 21, 44-48.	1.5	16
123	Investigations of Lipid-Protein Interactions on Monolayers of Chain-Substituted Phosphatidylcholines. Angewandte Chemie - International Edition, 2000, 39, 2775-2778.	13.8	16
124	Unconventional Air-Stable Interdigitated Bilayer Formed by 2,3-Disubstituted Fatty Acid Methyl Esters. Journal of Physical Chemistry B, 2005, 109, 19866-19875.	2.6	16
125	Adsorption of the antimicrobial peptide arenicin and its linear derivative to model membranes – A maximum insertion pressure study. Chemistry and Physics of Lipids, 2013, 167-168, 43-50.	3.2	16
126	From Two-Dimensional to Three-Dimensional at the Air/Water Interface: The Self-Aggregation of the Acridine Dye in Mixed Monolayers. Langmuir, 2013, 29, 4796-4805.	3.5	16

GERALD BREZESINSKI

#	Article	IF	CITATIONS
127	Interaction of DNA with Cationic Lipid Mixtures—Investigation at Langmuir Lipid Monolayers. Langmuir, 2017, 33, 10172-10183.	3.5	16
128	Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface. International Journal of Pharmaceutics, 2018, 541, 234-245.	5.2	16
129	Phospholipid and Protein Monolayers. Japanese Journal of Applied Physics, 1995, 34, 3906-3913.	1.5	15
130	Model Studies of the Interfacial Ordering of Oleanolic Acid in the Cuticula. ChemPhysChem, 2008, 9, 1670-1672.	2.1	15
131	Monolayer Characteristics of 1-Monostearoyl- <i>rac</i> -glycerol at the Air–Water Interface. Journal of Physical Chemistry C, 2015, 119, 9934-9946.	3.1	15
132	Structures of malonic acid diamide/phospholipid composites and their lipoplexes. Soft Matter, 2016, 12, 5854-5866.	2.7	15
133	Hydration properties of N-(α-hydroxyacyl)-sphingosine: X-ray powder diffraction and FT–Raman spectroscopic studies. Chemistry and Physics of Lipids, 2005, 136, 13-22.	3.2	14
134	Molecular mechanisms of phosphatidylcholine monolayer solidification due to hydroxyl radicals. Soft Matter, 2011, 7, 6467.	2.7	14
135	Langmuir Monolayers of an Inclusion Complex Formed by a New Calixarene Derivative and Fullerene. Langmuir, 2012, 28, 12114-12121.	3.5	14
136	Investigation of Binary Lipid Mixtures of a Three-Chain Cationic Lipid with Phospholipids Suitable for Gene Delivery. Bioconjugate Chemistry, 2015, 26, 2461-2473.	3.6	14
137	Sucrose esters as biocompatible surfactants for penetration enhancement: An insight into the mechanism of penetration enhancement studied using stratum corneum model lipids and Langmuir monolayers. European Journal of Pharmaceutical Sciences, 2017, 99, 161-172.	4.0	14
138	Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface. Beilstein Journal of Organic Chemistry, 2017, 13, 1099-1105.	2.2	14
139	Properties of unusual phospholipids: I. Synthesis, monolayer investigations and calorimetry of diacylglycerophosphocholines containing monoacetylenic acyl chains. Chemistry and Physics of Lipids, 1994, 70, 187-198.	3.2	13
140	Condensed phases in monolayers of a triple-chain lecithin on water. Physica B: Condensed Matter, 1994, 198, 146-149.	2.7	13
141	Convex-concave curvatures in bilayers of dipalmitoylphosphatidylcholine and cholesterol induced by amphotericin B/deoxycholate after prolonged storage. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 9-19.	2.6	13
142	Grazing Incidence Diffraction and Brewster-Angle Microscope Studies of Mixtures of Hexadecanoic Acid and Methyl Hexadecanoate:  The Unexpected Appearance of a Phase with Nearest-Neighbor Tilt. Journal of Physical Chemistry B, 2000, 104, 10053-10058.	2.6	13
143	Stepwise Collapse of Cyclolinear Polysiloxane Langmuir Monolayers Studied by Brewster Angle Microscopy and Grazing Incidence X-ray Diffraction. Macromolecules, 2004, 37, 4872-4881.	4.8	13
144	The Conformation of B18 Peptide in the Presence of Fluorinated and Alkylated Nanoparticles. ChemBioChem, 2005, 6, 280-283.	2.6	13

#	Article	IF	CITATIONS
145	Electrostatic interactions between polyelectrolyte and amphiphiles in two- and three-dimensional systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 79-88.	4.7	13
146	A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs. Biophysical Chemistry, 2010, 152, 109-117.	2.8	13
147	Conformational Properties of Arenicins: From the Bulk to the Air–Water Interface. ChemPhysChem, 2010, 11, 3262-3268.	2.1	13
148	Lipid ordering in planar 2D and 3D model membranes. Soft Matter, 2013, 9, 9440.	2.7	13
149	Hydrogen-Bond-Induced Chiral Discrimination in Monolayers of Bipolar Methyl Dihydroxyoctadecanoatesâ€,‡,§. Langmuir, 2000, 16, 8937-8945.	3.5	12
150	Physical study of the arrangement of pure catanionic glycolipids and interaction with phospholipids, in support of the optimisation of anti-HIV therapies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 55-72.	4.7	12
151	Adsorption of Amyloid β (1-40) Peptide at Liquid Interfaces. Zeitschrift Fur Physikalische Chemie, 2007, 221, 95-111.	2.8	12
152	Is the Viscoelasticity of Alzheimer's Aβ42 Peptide Oligomers a General Property of Protein Oligomers Related to Their Toxicity?. Langmuir, 2010, 26, 12060-12067.	3.5	12
153	Synthesis and DNA transfection properties of new head group modified malonic acid diamides. International Journal of Pharmaceutics, 2011, 409, 46-56.	5.2	12
154	Influence of Arenicin on Phase Transitions and Ordering of Lipids in 2D Model Membranes. Langmuir, 2013, 29, 12203-12211.	3.5	12
155	Langmuir Monolayers of Monocationic Lipid Mixed with Cholesterol or Fluorocholesterol: DNA Adsorption Studies. Langmuir, 2013, 29, 1920-1925.	3.5	12
156	The Directional Observation of Highly Dynamic Membrane Tubule Formation Induced by Engulfed Liposomes. Scientific Reports, 2015, 5, 16559.	3.3	12
157	Interface-controlled calcium phosphate mineralization: effect of oligo(aspartic acid)-rich interfaces. CrystEngComm, 2015, 17, 6901-6913.	2.6	12
158	DNA Delivery Systems Based on Peptide-Mimicking Cationic Lipids—The Effect of the Co-Lipid on the Structure and DNA Binding Capacity. Langmuir, 2019, 35, 4613-4625.	3.5	12
159	Successive Multilayer Formation of Cyclolinear Polyorganosiloxanes Floating at the Airâ^'Water Interface. A Synchrotron X-ray Reflectivity Investigation. Macromolecules, 2003, 36, 7236-7243.	4.8	11
160	β3R3-Peptides: design and synthesis of novel peptidomimetics and their self-assembling properties at the air–water interface. Organic and Biomolecular Chemistry, 2013, 11, 5399.	2.8	11
161	Evaluation of the Structure–Activity Relationship of Rifabutin and Analogs: A Drug–Membrane Study. ChemPhysChem, 2013, 14, 2808-2816.	2.1	11
162	Phase Behavior and Molecular Packing of Octadecyl Phenols and their Methyl Ethers at the Air/Water Interface. Langmuir, 2014, 30, 5780-5789.	3.5	11

#	Article	IF	CITATIONS
163	Phase behavior of selected artificial lipids. Current Opinion in Colloid and Interface Science, 2014, 19, 17-24.	7.4	11
164	Lamellar versus Micellar Structures—Aggregation Behavior of a Threeâ€Chain Cationic Lipid Designed for Nonviral Polynucleotide Transfer. ChemPhysChem, 2015, 16, 2115-2126.	2.1	11
165	Impact of Structural Differences in Galactocerebrosides on the Behavior of 2D Monolayers. Langmuir, 2016, 32, 2436-2444.	3.5	11
166	Lysine-based amino-functionalized lipids for gene transfection: the protonation state in monolayers at the air–liquid interface. Physical Chemistry Chemical Physics, 2017, 19, 20271-20280.	2.8	11
167	Phase behavior and miscibility in lipid monolayers containing glycolipids. Journal of Colloid and Interface Science, 2022, 615, 786-796.	9.4	11
168	Östrogenâ€Mesogene; Stilböstrol―und enantiomere Östradiolderivate. Zeitschrift Für Chemie, 1979, 19, 62-63.	0.0	10
169	Langmuir Monolayers with Fluorinated Groups in the Hydrophilic Head:  2. Morphology and Molecular Structure of Trifluoroethyl Behenate and Ethyl Behenate Monolayers. Langmuir, 2001, 17, 4581-4592.	3.5	10
170	Monolayers of mono- and bipolar palmitic acid derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 57-65.	4.7	10
171	The conformation of fusogenic B18 peptide in surfactant solutions. Journal of Peptide Science, 2008, 14, 436-441.	1.4	10
172	Amyloidogenic Peptides at Hydrophobic–Hydrophilic Interfaces: Coordination Affinities and the Chelate Effect Dictate the Competitive Binding of Cu ²⁺ and Zn ²⁺ . ChemPhysChem, 2011, 12, 2225-2229.	2.1	10
173	Influence of a hydrophilic spacer on the structure of a phospholipid monolayer. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1545-1550.	0.4	9
174	Self-organization of amphiphilic N-acylated linear polyethyleneimines: investigation of a reversible monolayer collapse. Thin Solid Films, 1996, 284-285, 304-307.	1.8	9
175	Adsorption of the Fusogenic Peptide B18 onto Solid Surfaces:Â Insights into the Mechanism of Peptide Assembly. Langmuir, 2007, 23, 5022-5028.	3.5	9
176	The Effect of the Reduction of the Available Surface Area on the Hemicyanine Aggregation in Laterally Organized Langmuir Monolayers. Journal of Physical Chemistry C, 2011, 115, 9059-9067.	3.1	9
177	New Micellar Transfection Agents. Langmuir, 2014, 30, 4905-4915.	3.5	9
178	Peptide p160â€Coated Silica Nanoparticles Applied in Photodynamic Therapy. Chemistry - an Asian Journal, 2014, 9, 2126-2131.	3.3	9
179	Lysine-based amino-functionalized lipids for gene transfection: the influence of the chain composition on 2D properties. Physical Chemistry Chemical Physics, 2018, 20, 6936-6944.	2.8	9
180	Lysine-based amino-functionalized lipids for gene transfection: 3D phase behaviour and transfection performance. Physical Chemistry Chemical Physics, 2018, 20, 17393-17405.	2.8	9

#	Article	IF	CITATIONS
181	Methyl-branched glycerophosphocholines: monolayer disorder and its effect on the rate of phospholipase A2 catalyzed hydrolysis. Physical Chemistry Chemical Physics, 2000, 2, 4605-4608.	2.8	8
182	Structures and phase transitions in aqueous dispersions of branched-chain glycerophosphoethanolamines. Physical Chemistry Chemical Physics, 2000, 2, 4509-4514.	2.8	8
183	Effect of Fluorination of the Hydrophilic Heads on Morphology and Molecular Structure of Langmuir Monolayers of Long-Chain Ethers. Journal of Physical Chemistry B, 2004, 108, 16154-16162.	2.6	8
184	Self-assembly of lipid domains in the extracellular leaflet of the plasma membrane and models thereof. Current Opinion in Colloid and Interface Science, 2016, 22, 65-72.	7.4	8
185	Synthesis and Biophysical Characterization of an Odd-Numbered 1,3-Diamidophospholipid. Langmuir, 2018, 34, 3215-3220.	3.5	8
186	Interactions of Cationic Lipids with DNA: A Structural Approach. Langmuir, 2018, 34, 14858-14868.	3.5	8
187	Self-Organization of an L-Ether-amide Phospholipid in Large Two-Dimensional Chiral Crystals. ChemPhysChem, 2003, 4, 1355-1358.	2.1	7
188	Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) studies of amide phospholipids. Chemistry and Physics of Lipids, 2005, 133, 79-88.	3.2	7
189	Weak First-Order Tilting Transition in Monolayers of Mono- and Bipolar Docosanol Derivativesâ€. Journal of Physical Chemistry B, 2006, 110, 22237-22244.	2.6	7
190	Adsorption of GST-PI3KÎ ³ at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid Monolayers. Biophysical Journal, 2009, 96, 1016-1025.	0.5	7
191	Structural Characterization of Self-Organized Mono- and Multilayers of Poly[bis(2,2,3,3-tetrafluoropropoxy)phosphazene] at the Air/Water Interface. Macromolecules, 2015, 48, 3327-3336.	4.8	7
192	Synthesis and study of the complex formation of a cationic alkyl-chain bola amino alcohol with DNA: in vitro transfection efficiency. Colloid and Polymer Science, 2015, 293, 3167-3175.	2.1	7
193	Role of counter-ion and helper lipid content in the design and properties of nanocarrier systems: a biophysical study in 2D and 3D lipid assemblies. RSC Advances, 2016, 6, 47730-47740.	3.6	7
194	Cerosomes as skin repairing agent: Mode of action studies with a model stratum corneum layer at liquid/air and liquid/solid interfaces. BBA Advances, 2022, 2, 100039.	1.6	7
195	Impact of inhibiting activity of indole inhibitors on phospholipid hydrolysis by phospholipase A2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256, 51-55.	4.7	6
196	Mesogene βâ€Estradiolanaloge. Zeitschrift Für Chemie, 1986, 26, 284-288.	0.0	6
197	Mechanism of Action of Cyclic Oligosquaramides on DPPC Phospholipid Monolayers. ChemPhysChem, 2012, 13, 453-458.	2.1	6
198	Versatility of a Glycosylphosphatidylinositol Fragment in Forming Highly Ordered Polymorphs. Langmuir, 2014, 30, 5185-5192.	3.5	6

#	Article	IF	CITATIONS
199	The Influence of Calcium Traces in Ultrapure Water on the Lateral Organization in Tetramyristoyl Cardiolipin Monolayers. ChemPhysChem, 2019, 20, 1521-1526.	2.1	6
200	Correlations between chemical structure and chain packing in two―and threeâ€dimensional systems. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 47-54.	0.6	5
201	Domain shapes and monolayer structures of triple-chain phospholipids on water. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1537-1544.	0.4	5
202	Stability and Structures of Liquid Crystalline Phases Formed by Branched-Chain Phospholipid Diastereomers. Journal of Physical Chemistry B, 2001, 105, 1901-1907.	2.6	5
203	Vinamidâ€Mesogene – [4â€nâ€Alkoxyâ€phenyl]â€{βâ€{4â€nâ€alkoxyâ€phenyl)aminoâ€vinyl]â€ketone. Zeits 1986, 26, 103-104.	schrift Fü	ar Chemie,
204	Tuning of the Hydrophobic and Hydrophilic Interactions in 2D Chiral Domains. Journal of Physical Chemistry C, 2012, 116, 19925-19933.	3.1	5
205	Interactions of N′-acetyl-rifabutin and N′-butanoyl-rifabutin with lipid bilayers: A synchrotron X-ray study. International Journal of Pharmaceutics, 2013, 453, 560-568.	5.2	5
206	Membrane binding of peptide models for early stages of amyloid formation: Lipid packing counts more than charge. Chemistry and Physics of Lipids, 2016, 198, 28-38.	3.2	5
207	A Dendritic Amphiphile for Efficient Control of Biomimetic Calcium Phosphate Mineralization. Macromolecular Bioscience, 2017, 17, 1600524.	4.1	5
208	Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Templateâ€Free Selfâ€Assembly. Angewandte Chemie, 2017, 129, 6615-6618.	2.0	5
209	Amphiphilic Functionalized Oligomers: A Promising Strategy for the Postfabrication Functionalization of Liposomes. Advanced Materials Interfaces, 2020, 7, 2001168.	3.7	5
210	Design of NKâ€2â€derived peptides with improved activity against equine sarcoid cells. Journal of Peptide Science, 2013, 19, 619-628.	1.4	4
211	Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and Growth. Crystal Growth and Design, 2017, 17, 5764-5774.	3.0	4
212	Against the rules: pressure induced transition from high to reduced order. Soft Matter, 2018, 14, 3978-3986.	2.7	4
213	The Impact of Alkyl hain Purity on Lipidâ€Based Nucleic Acid Delivery Systems – Is the Utilization of Lipid Components with Technical Grade Justified?. ChemPhysChem, 2019, 20, 2110-2121.	2.1	4
214	Relationship between structure and molecular interactions in monolayers of specially designed aminolipids. Nanoscale Advances, 2019, 1, 3529-3536.	4.6	4
215	Enhanced chain packing achieved via putative headgroup ion-triplet formation in binary anionic lipid/cationic surfactant mixed monolayers. Chemistry and Physics of Lipids, 2019, 225, 104827.	3.2	4
216	Interactions of Two Fragments of the Human Antimicrobial Peptide LL-37 with Zwitterionic and Anionic Lipid Monolayers. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1141-1159.	2.8	3

#	Article	IF	CITATIONS
217	Influence of calcium on ceramide-1-phosphate monolayers. Beilstein Journal of Nanotechnology, 2016, 7, 236-245.	2.8	3
218	Modification of Gibbs monolayers by chromium (III) compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 29-35.	4.7	3
219	A triple chain polycationic peptide-mimicking amphiphile – efficient DNA-transfer without co-lipids. Biomaterials Science, 2020, 8, 232-249.	5.4	3
220	Polymorphic domains in monolayers of isomeric triple-chain phospholipids. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 457-461.	0.6	2
221	Enzymatic Reactions at Interfaces. Studies in Interface Science, 2002, , 207-246.	0.0	2
222	Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction. Journal of Physics: Conference Series, 2007, 83, 012027.	0.4	2
223	Einfluß der Phasenumwandlung Eis → Wasser auf die Struktur von verzweigtkettigen Lecithinen im heterogenen, wassergesätigten Konzentrationsgebiet. Zeitschrift Für Chemie, 1986, 26, 28-29.	0.0	2
224	Effect of SDS and CTAB on Derivatives of Antimicrobial Peptides Arenicin and LL-37. Chemistry Letters, 2012, 41, 1178-1180.	1.3	2
225	Selfâ€Assembly Mechanism of Nanoparticles of Niâ€Based Prussian Blue Analogues at the Air/Liquid Interface: A Synchrotron Xâ€ray Reflectivity Study. ChemPhysChem, 2015, 16, 2549-2555.	2.1	2
226	The study of the formation of monolayers of quantum dots at different temperatures. Proceedings of SPIE, 2016, , .	0.8	2
227	Thermodynamic and Structural Behavior of αâ€Galactosylceramide and C6â€Functionalized αâ€GalCer in 2D Layers at the Air–Liquid Interface. ChemBioChem, 2020, 21, 241-247.	2.6	2
228	Tuning the Thickness of a Biomembrane by Stapling Diamidophospholipids with Bolalipids. Langmuir, 2020, 36, 8610-8616.	3.5	2
229	Two- and Three-Dimensional Physical–Chemical Characterization of CER[AP]: A Study of Stereochemistry and Chain Symmetry. Journal of Physical Chemistry B, 2021, 125, 9960-9969.	2.6	2
230	Vergleichende Untersuchungen an Mono―und Bischichtsystemen von drei methylverzweigten Phosphatidylcholinen. Zeitschrift Für Chemie, 1990, 30, 373-374.	0.0	1
231	Zwitterionic Character and Lipid Composition Determine the Behaviour of Glycosylphosphatidylinositol Fragments in Monolayers. ChemPhysChem, 2021, 22, 757-763.	2.1	1
232	The structure of a methylâ€branched phospholipid monolayer in contact with hexadecane. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 751-755.	0.9	0
233	Characterization of Anomalous Flow and Phase Behavior in a Langmuir Monolayer of 2-Hydroxy-tetracosanoic Acidâ€. Journal of Physical Chemistry B, 2006, 110, 22245-22250.	2.6	0
234	The influence of hydrophilic spacers on the phase behavior of ether lipids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 106-112.	4.7	0

#	Article	IF	CITATIONS
235	Interplay of Hydrophobic and Hydrophilic Interactions in a Mixed Polyoxometalate/Organic Langmuir Monolayer. Chemistry Letters, 2012, 41, 1185-1187.	1.3	0
236	Lamellar versus Micellar Structures—Aggregation Behavior of a Threeâ€Chain Cationic Lipid Designed for Nonviral Polynucleotide Transfer. ChemPhysChem, 2015, 16, 2029-2029.	2.1	0
237	Preparation of Carbon Nanosheets at Room Temperature. Journal of Visualized Experiments, 2016, , .	0.3	Ο