Darpan N Pandya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616635/publications.pdf

Version: 2024-02-01

430874 434195 32 991 18 citations h-index g-index papers

32 32 32 1186 docs citations times ranked citing authors all docs

31

#	Article	IF	CITATIONS
1	Radiopharmaceutical Quality Control Considerations for Accelerator-Produced Actinium Therapies. Cancer Biotherapy and Radiopharmaceuticals, 2022, 37, 355-363.	1.0	2
2	Preclinical evaluation of [225Ac]Ac-DOTA-TATE for treatment of lung neuroendocrine neoplasms. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3408-3421.	6.4	24
3	Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: Application in Early Detection of Pancreatic Cancer. ACS Nano, 2021, 15, 17348-17360.	14.6	21
4	Polyazamacrocycle Ligands Facilitate ⁸⁹ Zr Radiochemistry and Yield ⁸⁹ Zr Complexes with Remarkable Stability. Inorganic Chemistry, 2020, 59, 17473-17487.	4.0	13
5	Imaging of Fibroblast Activation Protein Alpha Expression in a Preclinical Mouse Model of Glioma Using Positron Emission Tomography. Molecules, 2020, 25, 3672.	3.8	21
6	Melanocortin 1 Receptor–Targeted α-Particle Therapy for Metastatic Uveal Melanoma. Journal of Nuclear Medicine, 2019, 60, 1124-1133.	5.0	31
7	Development of Targeted Alpha Particle Therapy for Solid Tumors. Molecules, 2019, 24, 4314.	3.8	82
8	⁸⁹ Zr-Chloride Can Be Used for Immuno-PET Radiochemistry Without Loss of Antigen Reactivity In Vivo. Journal of Nuclear Medicine, 2019, 60, 696-701.	5.0	14
9	High in Vivo Stability of ⁶⁴ Cu-Labeled Cross-Bridged Chelators Is a Crucial Factor in Improved Tumor Imaging of RGD Peptide Conjugates. Journal of Medicinal Chemistry, 2018, 61, 385-395.	6.4	19
10	A comprehensively revised strategy that improves the specific activity and long-term stability of clinically relevant89Zr-immuno-PET agents. Dalton Transactions, 2018, 47, 13214-13221.	3.3	11
11	Practical Guidelines for Cerenkov Luminescence Imaging with Clinically Relevant Isotopes. Methods in Molecular Biology, 2018, 1790, 197-208.	0.9	6
12	Recent Advances in Zirconium-89 Chelator Development. Molecules, 2018, 23, 638.	3.8	84
13	Visualization and Quantification of Radiochemical Purity by Cerenkov Luminescence Imaging. Analytical Chemistry, 2018, 90, 8927-8935.	6.5	6
14	Enhancing tissue permeability with MRI guided preclinical focused ultrasound system in rabbit muscle: From normal tissue to VX2 tumor. Journal of Controlled Release, 2017, 256, 1-8.	9.9	8
15	Alpha Particle Enhanced Blood Brain/Tumor Barrier Permeabilization in Glioblastomas Using Integrin Alpha-v Beta-3–Targeted Liposomes. Molecular Cancer Therapeutics, 2017, 16, 2191-2200.	4.1	28
16	Zirconium tetraazamacrocycle complexes display extraordinary stability and provide a new strategy for zirconium-89-based radiopharmaceutical development. Chemical Science, 2017, 8, 2309-2314.	7.4	87
17	Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89. PLoS ONE, 2017, 12, e0178767.	2.5	21
18	IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget, 2017, 8, 42997-43007.	1.8	55

#	Article	IF	CITATIONS
19	Preliminary Therapy Evaluation of ²²⁵ Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from ²²⁵ Ac Daughter Decay Can Be Detected by Optical Imaging for <i>In Vivo</i> Tumor Visualization. Theranostics, 2016, 6, 698-709.	10.0	63
20	Evaluation of a 3-hydroxypyridin-2-one (2,3-HOPO) Based Macrocyclic Chelator for 89Zr4+ and Its Use for ImmunoPET Imaging of HER2 Positive Model of Ovarian Carcinoma in Mice. Theranostics, 2016, 6, 511-521.	10.0	49
21	Phosphonate Pendant Armed Propylene Cross-Bridged Cyclam: Synthesis and Evaluation as a Chelator for Cu-64. ACS Medicinal Chemistry Letters, 2015, 6, 1162-1166.	2.8	12
22	Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for ⁶⁴ Cu Radiotracers. Inorganic Chemistry, 2015, 54, 8177-8186.	4.0	26
23	Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-124l-iodobenzoate in rat myocardial infarction model. Biochemical and Biophysical Research Communications, 2015, 456, 13-19.	2.1	17
24	Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chemical Communications, 2015, 51, 2301-2303.	4.1	41
25	Propylene Cross-Bridged Macrocyclic Bifunctional Chelator: A New Design for Facile Bioconjugation and Robust ⁶⁴ Cu Complex Stability. Journal of Medicinal Chemistry, 2014, 57, 7234-7243.	6.4	19
26	Molecular Targeted \hat{l}_{\pm} -Particle Therapy for Oncologic Applications. American Journal of Roentgenology, 2014, 203, 253-260.	2.2	62
27	Vivid Tumor Imaging Utilizing Liposome-Carried Bimodal Radiotracer. ACS Medicinal Chemistry Letters, 2014, 5, 390-394.	2.8	21
28	Non-Cross-Bridged Tetraazamacrocyclic Chelator for Stable ⁶⁴ Cu-Based Radiopharmaceuticals. ACS Medicinal Chemistry Letters, 2013, 4, 927-931.	2.8	21
29	New Bifunctional Chelator for ⁶⁴ Cu-Immuno-Positron Emission Tomography. Bioconjugate Chemistry, 2013, 24, 1356-1366.	3.6	23
30	New Macrobicyclic Chelator for the Development of Ultrastable ⁶⁴ Cu-Radiolabeled Bioconjugate. Bioconjugate Chemistry, 2012, 23, 330-335.	3.6	36
31	A New Synthesis of TE2A—a Potential Bifunctional Chelator for 64Cu. Nuclear Medicine and Molecular Imaging, 2010, 44, 185-192.	1.0	15
32	Revival of TE2A; a better chelate for Cu(II) ions than TETA?. Chemical Communications, 2010, 46, 3517.	4.1	53