Tuomas Knowles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6165948/publications.pdf

Version: 2024-02-01

380 papers

32,752 citations

82 h-index 161 g-index

446 all docs

446 docs citations

446 times ranked

23063 citing authors

#	Article	IF	CITATIONS
1	The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 2014, 15, 384-396.	37.0	1,894
2	Proliferation of amyloid- \hat{l}^2 42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9758-9763.	7.1	1,162
3	An Analytical Solution to the Kinetics of Breakable Filament Assembly. Science, 2009, 326, 1533-1537.	12.6	970
4	Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein. Cell, 2012, 149, 1048-1059.	28.9	755
5	Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 2011, 6, 469-479.	31.5	703
6	Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils. Science, 2007, 318, 1900-1903.	12.6	694
7	FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-Ï€ Interactions. Cell, 2018, 173, 720-734.e15.	28.9	662
8	On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics, 2015, 17, 7606-7618.	2.8	590
9	Characterization of the nanoscale properties of individual amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15806-15811.	7.1	579
10	Solution conditions determine the relative importance of nucleation and growth processes in \hat{l}_{\pm} -synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7671-7676.	7.1	546
11	Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nature Protocols, 2016, 11, 252-272.	12.0	546
12	Lipid vesicles trigger $\hat{l}\pm$ -synuclein aggregation by stimulating primary nucleation. Nature Chemical Biology, 2015, 11, 229-234.	8.0	532
13	A High Powerâ€Density, Mediatorâ€Free, Microfluidic Biophotovoltaic Device for Cyanobacterial Cells. Advanced Energy Materials, 2015, 5, 1-6.	19.5	531
14	Atomic structure and hierarchical assembly of a cross-Î ² amyloid fibril. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5468-5473.	7.1	479
15	Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Advanced Materials, 2016, 28, 6546-6561.	21.0	430
16	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	30.2	411
17	From Macroscopic Measurements to Microscopic Mechanisms of Protein Aggregation. Journal of Molecular Biology, 2012, 421, 160-171.	4.2	407
18	Differences in nucleation behavior underlie the contrasting aggregation kinetics of the $A\hat{1}^240$ and $A\hat{1}^242$ peptides. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9384-9389.	7.1	405

#	Article	IF	CITATIONS
19	Structural characterization of toxic oligomers that are kinetically trapped during \hat{l}_{\pm} -synuclein fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1994-2003.	7.1	384
20	A molecular chaperone breaks the catalytic cycle that generates toxic $\hat{A^2}$ oligomers. Nature Structural and Molecular Biology, 2015, 22, 207-213.	8.2	373
21	Metastability of Native Proteins and the Phenomenon of Amyloid Formation. Journal of the American Chemical Society, 2011, 133, 14160-14163.	13.7	369
22	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	38.1	345
23	Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nature Nanotechnology, 2010, 5, 204-207.	31.5	338
24	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin All as a Molecular Tether. Cell, 2019, 179, 147-164.e20.	28.9	327
25	Secondary nucleation in amyloid formation. Chemical Communications, 2018, 54, 8667-8684.	4.1	323
26	Stabilization of neurotoxic Alzheimer amyloid- \hat{l}^2 oligomers by protein engineering. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15595-15600.	7.1	304
27	Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. Journal of Chemical Physics, 2011, 135, 065105.	3.0	270
28	Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10328-10333.	7.1	252
29	Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature Communications, 2021, 12, 1085.	12.8	245
30	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123.	13.8	241
31	A natural product inhibits the initiation of \hat{l} ±-synuclein aggregation and suppresses its toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1009-E1017.	7.1	231
32	Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide. Nature Chemistry, 2020, 12, 445-451.	13.6	223
33	Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nature Communications, 2016, 7, 10948.	12.8	219
34	The Role of Stable \hat{l} ±-Synuclein Oligomers in the Molecular Events Underlying Amyloid Formation. Journal of the American Chemical Society, 2014, 136, 3859-3868.	13.7	218
35	Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nature Communications, 2014, 5, 5219.	12.8	197
36	Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends in Pharmacological Sciences, 2014, 35, 127-135.	8.7	191

#	Article	IF	CITATIONS
37	Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10016-10021.	7.1	186
38	Cholesterol catalyses \hat{A}^2 42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	13.6	186
39	Secondary nucleation of monomers on fibril surface dominates (i) \hat{l} ± (/i)-synuclein aggregation and provides autocatalytic amyloid amplification. Quarterly Reviews of Biophysics, 2017, 50, e6.	5.7	183
40	Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1206-15.	7.1	181
41	An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease. Science Advances, 2016, 2, e1501244.	10.3	180
42	Systematic development of small molecules to inhibit specific microscopic steps of AÎ ² 42 aggregation in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E200-E208.	7.1	180
43	A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nature Communications, 2015, 6, 7025.	12.8	179
44	Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. Journal of Chemical Physics, 2011, 135, 065106.	3.0	166
45	Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation. Annual Review of Physical Chemistry, 2018, 69, 273-298.	10.8	161
46	Interaction of the Molecular Chaperone DNAJB6 with Growing Amyloid-beta 42 (\hat{Al}^242) Aggregates Leads to Sub-stoichiometric Inhibition of Amyloid Formation. Journal of Biological Chemistry, 2014, 289, 31066-31076.	3.4	158
47	Crucial role of nonspecific interactions in amyloid nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17869-17874.	7.1	157
48	Expanding the Solvent Chemical Space for Self-Assembly of Dipeptide Nanostructures. ACS Nano, 2014, 8, 1243-1253.	14.6	146
49	Binding of the Molecular Chaperone $\hat{l}\pm B$ -Crystallin to A \hat{l}^2 Amyloid Fibrils Inhibits Fibril Elongation. Biophysical Journal, 2011, 101, 1681-1689.	0.5	143
50	Protein Aggregation in Crowded Environments. Journal of the American Chemical Society, 2010, 132, 5170-5175.	13.7	142
51	The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.	9.7	140
52	Different soluble aggregates of $\hat{Al^2}$ 42 can give rise to cellular toxicity through different mechanisms. Nature Communications, 2019, 10, 1541.	12.8	140
53	The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation. Biophysical Journal, 2010, 98, 843-851.	0.5	136
54	Observation of spatial propagation of amyloid assembly from single nuclei. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14746-14751.	7.1	134

#	Article	IF	CITATIONS
55	Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid- \hat{l}^2 peptide. Nature Chemistry, 2018, 10, 523-531.	13.6	129
56	Secondary nucleation and elongation occur at different sites on Alzheimer's amyloid-β aggregates. Science Advances, 2019, 5, eaau3112.	10.3	127
57	Strength of Nanotubes, Filaments, and Nanowires From Sonicationâ€Induced Scission. Advanced Materials, 2009, 21, 3945-3948.	21.0	126
58	Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein by Small Molecules as a Potential Therapeutic Strategy for Parkinson's Disease. PLoS ONE, 2014, 9, e87133.	2.5	126
59	Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses. Nature Nanotechnology, 2013, 8, 130-136.	31.5	125
60	Kinetic fingerprints differentiate the mechanisms of action of anti- $\hat{Al^2}$ antibodies. Nature Structural and Molecular Biology, 2020, 27, 1125-1133.	8.2	123
61	Perturbation of the Stability of Amyloid Fibrils through Alteration of Electrostatic Interactions. Biophysical Journal, 2011, 100, 2783-2791.	0.5	121
62	Protein Microgels from Amyloid Fibril Networks. ACS Nano, 2015, 9, 43-51.	14.6	121
63	The $\hat{Al^2}40$ and $\hat{Al^2}42$ peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chemical Science, 2015, 6, 4215-4233.	7.4	121
64	Quantification of the Concentration of ${\rm A\hat{l}}^242$ Propagons during the Lag Phase by an Amyloid Chain Reaction Assay. Journal of the American Chemical Society, 2014, 136, 219-225.	13.7	120
65	Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nature Communications, 2016, 7, 12934.	12.8	116
66	Selective targeting of primary and secondary nucleation pathways in $A\hat{l}^242$ aggregation using a rational antibody scanning method. Science Advances, 2017, 3, e1700488.	10.3	116
67	Detailed Analysis of the Energy Barriers for Amyloid Fibril Growth. Angewandte Chemie - International Edition, 2012, 51, 5247-5251.	13.8	112
68	Trodusquemine enhances $\hat{Al^2}42$ aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications, 2019, 10, 225.	12.8	111
69	The Amyloid Phenomenon and Its Significance in Biology and Medicine. Cold Spring Harbor Perspectives in Biology, 2020, 12, a033878.	5. 5	111
70	Protein micro- and nano-capsules for biomedical applications. Chemical Society Reviews, 2014, 43, 1361-1371.	38.1	110
71	Atomic force microscopy for single molecule characterisation of protein aggregation. Archives of Biochemistry and Biophysics, 2019, 664, 134-148.	3.0	109
72	Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	107

5

#	Article	IF	Citations
73	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341.	14.6	105
74	Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nature Energy, 2018, 3, 75-81.	39.5	103
75	Kinetic diversity of amyloid oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12087-12094.	7.1	103
76	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	31.5	101
77	On the role of sidechain size and charge in the aggregation of A <i>\hat{l}^2</i> 42 with familial mutations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5849-E5858.	7.1	98
78	Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS Nano, 2018, 12, 6612-6619.	14.6	97
79	Silk micrococoons for protein stabilisation and molecular encapsulation. Nature Communications, 2017, 8, 15902.	12.8	96
80	Identification and nanomechanical characterization of the fundamental single-strand protofilaments of amyloid $\hat{l}\pm$ -synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7230-7235.	7.1	96
81	Learning the molecular grammar of protein condensates from sequence determinants and embeddings. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	96
82	Small-molecule sequestration of amyloid- \hat{l}^2 as a drug discovery strategy for Alzheimerâ \in TM s disease. Science Advances, 2020, 6, .	10.3	95
83	Characterisation of Amyloid Fibril Formation by Small Heat-shock Chaperone Proteins Human αA-, αB-and R120G αB-Crystallins. Journal of Molecular Biology, 2007, 372, 470-484.	4.2	93
84	Conserved C-Terminal Charge Exerts a Profound Influence on the Aggregation Rate of \hat{l}_{\pm} -Synuclein. Journal of Molecular Biology, 2011, 411, 329-333.	4.2	92
85	Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations. Journal of Chemical Physics, 2011, 135, 065107.	3.0	92
86	Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants. Scientific Reports, 2015, 5, 16696.	3.3	92
87	Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nature Communications, 2020, 11, 2945.	12.8	92
88	Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly. ACS Nano, 2016, 10, 7436-7442.	14.6	91
89	Physical determinants of the self-replication of protein fibrils. Nature Physics, 2016, 12, 874-880.	16.7	90
90	Dynamic microfluidic control of supramolecular peptide self-assembly. Nature Communications, 2016, 7, 13190.	12.8	89

#	Article	IF	Citations
91	Electrostatic Effects in Filamentous Protein Aggregation. Biophysical Journal, 2013, 104, 1116-1126.	0.5	88
92	Excitations with negative dispersion in a spin vortex. Physical Review B, 2005, 71, .	3.2	86
93	Inversion of the Balance between Hydrophobic and Hydrogen Bonding Interactions in Protein Folding and Aggregation. PLoS Computational Biology, 2011, 7, e1002169.	3.2	86
94	Multistep Inhibition of \hat{l} ±-Synuclein Aggregation and Toxicity <i>iin Vitro</i> and <i>iin Vivo</i> by Trodusquemine. ACS Chemical Biology, 2018, 13, 2308-2319.	3.4	86
95	Protein Solubility and Protein Homeostasis: A Generic View of Protein Misfolding Disorders. Cold Spring Harbor Perspectives in Biology, 2011, 3, a010454-a010454.	5.5	83
96	A Clear View of Polymorphism, Twist, and Chirality in Amyloid Fibril Formation. ACS Nano, 2013, 7, 10443-10448.	14.6	83
97	From Protein Building Blocks to Functional Materials. ACS Nano, 2021, 15, 5819-5837.	14.6	83
98	Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nature Communications, 2018, 9, 2110.	12.8	82
99	Fast Flow Microfluidics and Single-Molecule Fluorescence for the Rapid Characterization of α-Synuclein Oligomers. Analytical Chemistry, 2015, 87, 8818-8826.	6.5	81
100	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291.	2.0	79
101	Conformational Expansion of Tau in Condensates Promotes Irreversible Aggregation. Journal of the American Chemical Society, 2021, 143, 13056-13064.	13.7	78
102	Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated $\hat{Al^2}$ -peptide. Scientific Reports, 2016, 6, 18728.	3.3	77
103	Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chemical Science, 2018, 9, 5937-5948.	7.4	76
104	Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. Source Code for Biology and Medicine, 2014, 9, 16.	1.7	73
105	Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation. Journal of Chemical Physics, 2016, 145, 211926.	3.0	73
106	Population of Nonnative States of Lysozyme Variants Drives Amyloid Fibril Formation. Journal of the American Chemical Society, 2011, 133, 7737-7743.	13.7	72
107	Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angewandte Chemie - International Edition, 2017, 56, 7750-7754.	13.8	72
108	Spatial Persistence of Angular Correlations in Amyloid Fibrils. Physical Review Letters, 2006, 96, 238301.	7.8	71

#	Article	IF	CITATIONS
109	In vivo rate-determining steps of tau seed accumulation in Alzheimer's disease. Science Advances, 2021, 7, eabh1448.	10.3	70
110	Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading. ACS Chemical Neuroscience, 2018, 9, 1276-1282.	3.5	68
111	Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Scientific Reports, 2016, 6, 25288.	3.3	67
112	Physical Determinants of Amyloid Assembly in Biofilm Formation. MBio, 2019, 10, .	4.1	66
113	\hat{l}^2 -Synuclein suppresses both the initiation and amplification steps of \hat{l}_\pm -synuclein aggregation via competitive binding to surfaces. Scientific Reports, 2016, 6, 36010.	3.3	65
114	Scaling behaviour and rate-determining steps in filamentous self-assembly. Chemical Science, 2017, 8, 7087-7097.	7.4	65
115	Liquid–liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO Journal, 2021, 40, e107711.	7.8	65
116	C-terminal truncation of \hat{l}_{\pm} -synuclein promotes amyloid fibril amplification at physiological pH. Chemical Science, 2018, 9, 5506-5516.	7.4	64
117	Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathologica Communications, 2019, 7, 120.	5.2	64
118	Identification of on- and off-pathway oligomers in amyloid fibril formation. Chemical Science, 2020, 11, 6236-6247.	7.4	64
119	Frequency Factors in a Landscape Model of Filamentous Protein Aggregation. Physical Review Letters, 2010, 104, 228101.	7.8	63
120	Interactions between Amyloidophilic Dyes and Their Relevance to Studies of Amyloid Inhibitors. Biophysical Journal, 2010, 99, 3492-3497.	0.5	63
121	Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations. PLoS Computational Biology, 2012, 8, e1002692.	3.2	63
122	Nanobodies raised against monomeric É'-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biology, 2017, 15, 57.	3.8	61
123	Rational design of a conformation-specific antibody for the quantification of $A\hat{l}^2$ oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13509-13518.	7.1	61
124	The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. Essays in Biochemistry, 2014, 56, 11-39.	4.7	60
125	Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the $A\hat{l}^242$ peptide and its variants. Chemical Science, 2017, 8, 4352-4362.	7.4	60
126	Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6444-6449.	7.1	60

#	Article	IF	CITATIONS
127	Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid- \hat{l}^2 Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules, 2020, 21, 1112-1125.	5.4	59
128	N-Terminal Extensions Retard A \hat{l}^2 42 Fibril Formation but Allow Cross-Seeding and Coaggregation with A \hat{l}^2 42. Journal of the American Chemical Society, 2015, 137, 14673-14685.	13.7	58
129	The Influence of Pathogenic Mutations in $\hat{l}\pm$ -Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils. ACS Nano, 2020, 14, 5213-5222.	14.6	58
130	The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25272-25283.	7.1	58
131	The Component Polypeptide Chains of Bovine Insulin Nucleate or Inhibit Aggregation of the Parent Protein in a Conformation-dependent Manner. Journal of Molecular Biology, 2006, 360, 497-509.	4.2	56
132	Latent analysis of unmodified biomolecules and their complexes in solution with attomole detection sensitivity. Nature Chemistry, 2015, 7, 802-809.	13.6	56
133	Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteineâ€Selective Protein Modification and Charge Modulation. Angewandte Chemie - International Edition, 2019, 58, 6640-6644.	13.8	55
134	SAR by kinetics for drug discovery in protein misfolding diseases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10245-10250.	7.1	54
135	Massively parallel C. elegans tracking provides multi-dimensional fingerprints for phenotypic discovery. Journal of Neuroscience Methods, 2018, 306, 57-67.	2.5	52
136	Conserved S/T Residues of the Human Chaperone DNAJB6 Are Required for Effective Inhibition of A \hat{I}^2 42 Amyloid Fibril Formation. Biochemistry, 2018, 57, 4891-4902.	2.5	52
137	Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single $\hat{Al^2}42$ oligomers. Nature Communications, 2021, 12, 688.	12.8	52
138	Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family of chaperones. Scientific Reports, 2016, 6, 24656.	3.3	51
139	Nucleated Polymerisation in the Presence of Pre-Formed Seed Filaments. International Journal of Molecular Sciences, 2011, 12, 5844-5852.	4.1	50
140	Oligomer Diversity during the Aggregation of the Repeat Region of Tau. ACS Chemical Neuroscience, 2018, 9, 3060-3071.	3.5	50
141	Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nature Communications, 2021, 12, 3529.	12.8	50
142	Microfluidics for Protein Biophysics. Journal of Molecular Biology, 2018, 430, 565-580.	4.2	49
143	Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24251-24257.	7.1	49
144	Interactions of \hat{l}_{\pm} -synuclein oligomers with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183536.	2.6	49

#	Article	IF	Citations
145	Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano Letters, 2022, 22, 612-621.	9.1	49
146	Highly specific label-free protein detection from lysed cells using internally referenced microcantilever sensors. Biosensors and Bioelectronics, 2008, 24, 233-237.	10.1	48
147	Twisting Transition between Crystalline and Fibrillar Phases of Aggregated Peptides. Physical Review Letters, 2012, 109, 158101.	7.8	48
148	Quantitative thermophoretic study of disease-related protein aggregates. Scientific Reports, 2016, 6, 22829.	3.3	48
149	Digital Sensing and Molecular Computation by an Enzyme-Free DNA Circuit. ACS Nano, 2020, 14, 5763-5771.	14.6	48
150	Measurement of Amyloid Fibril Length Distributions by Inclusion of Rotational Motion in Solution NMR Diffusion Measurements. Angewandte Chemie - International Edition, 2008, 47, 3385-3387.	13.8	47
151	Positionâ€Dependent Electrostatic Protection against Protein Aggregation. ChemBioChem, 2009, 10, 1309-1312.	2.6	47
152	Inhibition of \hat{l}_{\pm} -Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between \hat{l}_{\pm} -Synuclein Species. Biochemistry, 2017, 56, 1177-1180.	2.5	47
153	Attoliter protein nanogels from droplet nanofluidics for intracellular delivery. Science Advances, 2020, 6, eaay7952.	10.3	47
154	Nanoscale spatially resolved infrared spectra from single microdroplets. Lab on A Chip, 2014, 14, 1315-1319.	6.0	46
155	Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. International Journal of Molecular Sciences, 2018, 19, 2582.	4.1	46
156	Autocatalytic amplification of Alzheimer-associated A \hat{l}^2 42 peptide aggregation in human cerebrospinal fluid. Communications Biology, 2019, 2, 365.	4.4	46
157	Biosensorâ€based labelâ€free assays of amyloid growth. FEBS Letters, 2009, 583, 2587-2592.	2.8	45
158	Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Scientific Reports, 2016, 6, 28658.	3.3	45
159	Monomeric and fibrillar \hat{l} ±-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of $A\hat{l}^2$ 42 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8005-8010.	7.1	45
160	Scalable integration of nano-, and microfluidics with hybrid two-photon lithography. Microsystems and Nanoengineering, 2019, 5, 40.	7.0	45
161	Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. Journal of the American Chemical Society, 2018, 140, 2493-2503.	13.7	44
162	Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Communications Biology, 2020, 3, 435.	4.4	44

#	Article	IF	Citations
163	LAG3 is not expressed in human and murine neurons and does not modulate αâ€synucleinopathies. EMBO Molecular Medicine, 2021, 13, e14745.	6.9	44
164	Density-Gradient-Free Microfluidic Centrifugation for Analytical and Preparative Separation of Nanoparticles. Nano Letters, 2014, 14, 2365-2371.	9.1	43
165	Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS Nano, 2015, 9, 5772-5781.	14.6	43
166	Surface Attachment of Protein Fibrils via Covalent Modification Strategies. Journal of Physical Chemistry B, 2010, 114, 10925-10938.	2.6	42
167	Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning. Biomicrofluidics, 2017, 11, 014113.	2.4	42
168	Real-Time Intrinsic Fluorescence Visualization and Sizing of Proteins and Protein Complexes in Microfluidic Devices. Analytical Chemistry, 2018, 90, 3849-3855.	6.5	42
169	Stabilization and Characterization of Cytotoxic $\hat{Al^2}$ sub>40 Oligomers Isolated from an Aggregation Reaction in the Presence of Zinc Ions. ACS Chemical Neuroscience, 2018, 9, 2959-2971.	3. 5	42
170	Label-Free Analysis of Protein Aggregation and Phase Behavior. ACS Nano, 2019, 13, 13940-13948.	14.6	42
171	Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. Journal of Chemical Physics, 2015, 143, 054901.	3.0	41
172	Microfluidic deposition for resolving single-molecule protein architecture and heterogeneity. Nature Communications, 2018, 9, 3890.	12.8	40
173	Nucleation-conversion-polymerization reactions of biological macromolecules with prenucleation clusters. Physical Review E, 2014, 89, 032712.	2.1	39
174	On-chip label-free protein analysis with downstream electrodes for direct removal of electrolysis products. Lab on A Chip, 2018, 18, 162-170.	6.0	39
175	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	10.0	39
176	Quantifying Co-Oligomer Formation by α-Synuclein. ACS Nano, 2018, 12, 10855-10866.	14.6	38
177	Direct measurement of lipid membrane disruption connects kinetics and toxicity of $\hat{Al^2}42$ aggregation. Nature Structural and Molecular Biology, 2020, 27, 886-891.	8.2	38
178	Biocompatible Hybrid Organic/Inorganic Microhydrogels Promote Bacterial Adherence and Eradication <i>in Vitro</i> and <i>in Vivo</i> Nano Letters, 2020, 20, 1590-1597.	9.1	38
179	Coating and Stabilization of Liposomes by Clathrin-Inspired DNA Self-Assembly. ACS Nano, 2020, 14, 2316-2323.	14.6	38
180	Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of A \hat{I}^2 42 Aggregation. Journal of the American Chemical Society, 2021, 143, 16621-16629.	13.7	38

#	Article	IF	Citations
181	Ultrastructural evidence for self-replication of Alzheimer-associated \hat{A}^2 42 amyloid along the sides of fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11265-11273.	7.1	37
182	The Hsc70 disaggregation machinery removes monomer units directly from \hat{l}_{\pm} -synuclein fibril ends. Nature Communications, 2021, 12, 5999.	12.8	37
183	Probing small molecule binding to amyloid fibrils. Physical Chemistry Chemical Physics, 2011, 13, 20044.	2.8	36
184	Role of Elongation and Secondary Pathways in S6 Amyloid Fibril Growth. Biophysical Journal, 2012, 102, 2167-2175.	0.5	36
185	Role of filament annealing in the kinetics and thermodynamics of nucleated polymerization. Journal of Chemical Physics, 2014, 140, 214904.	3.0	36
186	Molecular Rotors Provide Insights into Microscopic Structural Changes During Protein Aggregation. Journal of Physical Chemistry B, 2015, 119, 10170-10179.	2.6	36
187	Ultrathin Polydopamine Films with Phospholipid Nanodiscs Containing a Glycophorin A Domain. Advanced Functional Materials, 2020, 30, 2000378.	14.9	36
188	Label-free detection of amyloid growth with microcantilever sensors. Nanotechnology, 2008, 19, 384007.	2.6	35
189	A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins. ACS Combinatorial Science, 2016, 18, 144-153.	3.8	35
190	Selfâ€Assembly of Amyloid Fibrils That Display Active Enzymes. ChemCatChem, 2014, 6, 1961-1968.	3.7	34
191	Squalamine and Its Derivatives Modulate the Aggregation of Amyloid- \hat{l}^2 and $\hat{l}\pm$ -Synuclein and Suppress the Toxicity of Their Oligomers. Frontiers in Neuroscience, 2021, 15, 680026.	2.8	34
192	Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110410.	4.0	33
193	Mean-field master equation formalism for biofilament growth. American Journal of Physics, 2014, 82, 476-483.	0.7	33
194	Elastic instability-mediated actuation by a supra-molecular polymer. Nature Physics, 2016, 12, 926-930.	16.7	32
195	Hamiltonian Dynamics of Protein Filament Formation. Physical Review Letters, 2016, 116, 038101.	7.8	32
196	Fluctuations in the Kinetics of Linear Protein Self-Assembly. Physical Review Letters, 2016, 116, 258103.	7.8	32
197	Microfluidic approaches for the analysis of protein–protein interactionsÂin solution. Biophysical Reviews, 2020, 12, 575-585.	3.2	32
198	Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer's disease. Brain Communications, 2021, 3, fcab147.	3.3	32

#	Article	IF	Citations
199	Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum. ACS Infectious Diseases, 2021, 7, 2362-2369.	3.8	32
200	Biophotonics of Native Silk Fibrils. Macromolecular Bioscience, 2018, 18, e1700295.	4.1	31
201	Kinetic barriers to \hat{l}_{\pm} -synuclein protofilament formation and conversion into mature fibrils. Chemical Communications, 2018, 54, 7854-7857.	4.1	31
202	Converting lateral scanning into axial focusing to speed up three-dimensional microscopy. Light: Science and Applications, 2020, 9, 165.	16.6	31
203	Chemical and biophysical insights into the propagation of prion strains. HFSP Journal, 2008, 2, 332-341.	2.5	30
204	Integration and characterization of solid wall electrodes in microfluidic devices fabricated in a single photolithography step. Applied Physics Letters, 2013, 102, .	3.3	30
205	Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry. Biomacromolecules, 2017, 18, 3642-3651.	5.4	30
206	Physical mechanisms of amyloid nucleation on fluid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33090-33098.	7.1	30
207	The C-terminal tail of \hat{l}_{\pm} -synuclein protects against aggregate replication but is critical for oligomerization. Communications Biology, 2022, 5, 123.	4.4	30
208	Multiphase Protein Microgels. Macromolecular Bioscience, 2015, 15, 501-508.	4.1	29
209	A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Biophysical Journal, 2016, 110, 1957-1966.	0.5	29
210	Consistent Treatment of Hydrophobicity in Protein Lattice Models Accounts for Cold Denaturation. Physical Review Letters, 2016, 116, 078101.	7.8	29
211	Microfluidic Diffusion Viscometer for Rapid Analysis of Complex Solutions. Analytical Chemistry, 2016, 88, 3488-3493.	6.5	29
212	Waterâ€Dispersible Polydopamineâ€Coated Nanofibers for Stimulation of Neuronal Growth and Adhesion. Advanced Healthcare Materials, 2018, 7, e1701485.	7.6	29
213	Enhancing the Resolution of Micro Free Flow Electrophoresis through Spatially Controlled Sample Injection. Analytical Chemistry, 2018, 90, 8998-9005.	6.5	29
214	Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromolecular Rapid Communications, 2019, 40, e1800898.	3.9	29
215	Asymptotic solutions of the Oosawa model for the length distribution of biofilaments. Journal of Chemical Physics, 2014, 140, 194906.	3.0	28
216	Thermodynamics of Polypeptide Supramolecular Assembly in the Short-Chain Limit. Journal of the American Chemical Society, 2017, 139, 16134-16142.	13.7	28

#	Article	IF	CITATIONS
217	Observation of molecular self-assembly events in massively parallel microdroplet arrays. Lab on A Chip, 2018, 18, 3303-3309.	6.0	28
218	Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. Journal of Colloid and Interface Science, 2020, 560, 149-160.	9.4	28
219	Relationship between Prion Propensity and the Rates of Individual Molecular Steps of Fibril Assembly. Journal of Biological Chemistry, 2011, 286, 12101-12107.	3.4	27
220	Synthesis of Nonequilibrium Supramolecular Peptide Polymers on a Microfluidic Platform. Journal of the American Chemical Society, 2016, 138, 9589-9596.	13.7	27
221	Particle-Based Monte-Carlo Simulations of Steady-State Mass Transport at Intermediate Péclet Numbers. International Journal of Nonlinear Sciences and Numerical Simulation, 2016, 17, 175-183.	1.0	27
222	Microfluidic approaches for probing amyloid assembly and behaviour. Lab on A Chip, 2018, 18, 999-1016.	6.0	27
223	Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. Acta Biomaterialia, 2018, 78, 111-122.	8.3	27
224	Screening of small molecules using the inhibition of oligomer formation in \hat{l}_{\pm} -synuclein aggregation as a selection parameter. Communications Chemistry, 2020, 3, .	4.5	27
225	Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Natural Product Reports, 2022, 39, 742-753.	10.3	27
226	Aggregationâ€Prone Amyloidâ€Î²â‹Cu ^{II} Species Formed on the Millisecond Timescale under Mildly Acidic Conditions. ChemBioChem, 2015, 16, 1293-1297.	2.6	26
227	Micro- and nanoscale hierarchical structure of core–shell protein microgels. Journal of Materials Chemistry B, 2016, 4, 7989-7999.	5.8	26
228	On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules, 2020, 21, 4781-4794.	5.4	26
229	The molecular processes underpinning prion-like spreading and seed amplification in protein aggregation. Current Opinion in Neurobiology, 2020, 61, 58-64.	4.2	26
230	Neuronal Cx3cr1 Deficiency Protects against Amyloid \hat{l}^2 -Induced Neurotoxicity. PLoS ONE, 2015, 10, e0127730.	2.5	26
231	Single Point Mutations Induce a Switch in the Molecular Mechanism of the Aggregation of the Alzheimer's Disease Associated Aβ ₄₂ Peptide. ACS Chemical Biology, 2014, 9, 378-382.	3.4	25
232	Force generation by the growth of amyloid aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9524-9529.	7.1	25
233	Gradient-free determination of isoelectric points of proteins on chip. Physical Chemistry Chemical Physics, 2017, 19, 23060-23067.	2.8	25
234	Image-Assisted Microvessel-on-a-Chip Platform for Studying Cancer Cell Transendothelial Migration Dynamics. Scientific Reports, 2018, 8, 12480.	3.3	25

#	Article	IF	CITATIONS
235	A dopamine metabolite stabilizes neurotoxic amyloid- \hat{I}^2 oligomers. Communications Biology, 2021, 4, 19.	4.4	25
236	Kinetic theory of protein filament growth: Self-consistent methods and perturbative techniques. International Journal of Modern Physics B, 2015, 29, 1530002.	2.0	24
237	Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-Synuclein Oligomers in Solution. Nano Letters, 2020, 20, 8163-8169.	9.1	24
238	The catalytic nature of protein aggregation. Journal of Chemical Physics, 2020, 152, 045101.	3.0	24
239	Surface-Catalyzed Secondary Nucleation Dominates the Generation of Toxic IAPP Aggregates. Frontiers in Molecular Biosciences, 2021, 8, 757425.	3.5	24
240	Single-Molecule Measurements of Transient Biomolecular Complexes through Microfluidic Dilution. Analytical Chemistry, 2013, 85, 6855-6859.	6.5	23
241	Direct Observation of Murine Prion Protein Replication in Vitro. Journal of the American Chemical Society, 2018, 140, 14789-14798.	13.7	23
242	Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform. Nature Protocols, 2020, 15, 2071-2106.	12.0	23
243	The physical basis of protein misfolding disorders. Physics Today, 2015, 68, 36-41.	0.3	22
244	Direct observation of prion protein oligomer formation reveals an aggregation mechanism with multiple conformationally distinct species. Chemical Science, 2019, 10, 4588-4597.	7.4	22
245	Phase Transition and Crystallization Kinetics of a Supramolecular System in a Microfluidic Platform. Chemistry of Materials, 2020, 32, 8342-8349.	6.7	22
246	Complexity in Lipid Membrane Composition Induces Resilience to AÎ 2 ₄₂ Aggregation. ACS Chemical Neuroscience, 2020, 11, 1347-1352.	3.5	22
247	Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nature Structural and Molecular Biology, 2021, 28, 365-372.	8.2	22
248	Tetracycline Nanoparticles as Antibacterial and Geneâ€Silencing Agents. Advanced Healthcare Materials, 2015, 4, 723-728.	7.6	21
249	Physical principles of filamentous protein self-assembly kinetics. Journal of Physics Condensed Matter, 2017, 29, 153002.	1.8	21
250	Absolute Quantification of Amyloid Propagons by Digital Microfluidics. Analytical Chemistry, 2017, 89, 12306-12313.	6.5	21
251	Mechanobiology of Protein Droplets: Force Arises from Disorder. Cell, 2018, 175, 1457-1459.	28.9	21
252	Spatial Propagation of Protein Polymerization. Physical Review Letters, 2014, 112, 098101.	7.8	20

#	Article	IF	Citations
253	Microfluidic Diffusion Platform for Characterizing the Sizes of Lipid Vesicles and the Thermodynamics of Protein–Lipid Interactions. Analytical Chemistry, 2018, 90, 3284-3290.	6.5	20
254	Extrinsic Amyloid-Binding Dyes for Detection of Individual Protein Aggregates in Solution. Analytical Chemistry, 2018, 90, 10385-10393.	6.5	20
255	Templating S100A9 amyloids on \hat{A}^2 fibrillar surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses. Chemical Science, 2020, 11, 7031-7039.	7.4	20
256	Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. Advanced Science, 2021, 8, 2002182.	11.2	20
257	Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems. Analytical Chemistry, 2017, 89, 11929-11936.	6.5	20
258	Recent Advances in Microgels: From Biomolecules to Functionality. Small, 2022, 18, .	10.0	20
259	Fabrication and characterisation of protein fibril–elastomer composites. Acta Biomaterialia, 2010, 6, 1337-1341.	8.3	19
260	The length distribution of frangible biofilaments. Journal of Chemical Physics, 2015, 143, 164901.	3.0	19
261	Reaction rate theory for supramolecular kinetics: application to protein aggregation. Molecular Physics, 2018, 116, 3055-3065.	1.7	19
262	Stochastic calculus of protein filament formation under spatial confinement. New Journal of Physics, 2018, 20, 055007.	2.9	19
263	Sequenceâ€Optimized Peptide Nanofibers as Growth Stimulators for Regeneration of Peripheral Neurons. Advanced Functional Materials, 2019, 29, 1809112.	14.9	19
264	Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices. Langmuir, 2020, 36, 2349-2356.	3.5	19
265	Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules. ACS Nano, 2021, 15, 18305-18311.	14.6	19
266	Proliferation of Tau 304–380 Fragment Aggregates through Autocatalytic Secondary Nucleation. ACS Chemical Neuroscience, 2021, 12, 4406-4415.	3.5	19
267	Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chemical Communications, 2015, 51, 14425-14434.	4.1	18
268	A microfluidic platform for quantitative measurements of effective protein charges and single ion binding in solution. Physical Chemistry Chemical Physics, 2015, 17, 12161-12167.	2.8	18
269	Kinetic constraints on self-assembly into closed supramolecular structures. Scientific Reports, 2017, 7, 12295.	3.3	18
270	Enhancement of the Anti-Aggregation Activity of a Molecular Chaperone Using a Rationally Designed Post-Translational Modification. ACS Central Science, 2019, 5, 1417-1424.	11.3	18

#	Article	IF	Citations
271	Effects of sedimentation, microgravity, hydrodynamic mixing and air–water interface on α-synuclein amyloid formation. Chemical Science, 2020, 11, 3687-3693.	7.4	18
272	Shear-mediated sol-gel transition of regenerated silk allows the formation of Janus-like microgels. Scientific Reports, 2021, 11, 6673.	3.3	18
273	Liquid–Liquid Phaseâ€Separated Systems from Reversible Gel–Sol Transition of Protein Microgels. Advanced Materials, 2021, 33, e2008670.	21.0	18
274	A Microfluidic Coâ€Flow Route for Human Serum Albuminâ€Ðrug–Nanoparticle Assembly. Chemistry - A European Journal, 2020, 26, 5965-5969.	3.3	17
275	Combining Affinity Selection and Specific Ion Mobility for Microchip Protein Sensing. Analytical Chemistry, 2018, 90, 10302-10310.	6.5	16
276	Kinetic Analysis of Amyloid Formation. Methods in Molecular Biology, 2018, 1779, 181-196.	0.9	16
277	Increased Secondary Nucleation Underlies Accelerated Aggregation of the Four-Residue N-Terminally Truncated Aβ42 Species Aβ5–42. ACS Chemical Neuroscience, 2019, 10, 2374-2384.	3.5	16
278	In situ kinetic measurements of \hat{l}_{\pm} -synuclein aggregation reveal large population of short-lived oligomers. PLoS ONE, 2021, 16, e0245548.	2.5	16
279	Polymer physics inspired approaches for the study of the mechanical properties of amyloid fibrils. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 281-292.	2.1	15
280	Automated Ex Situ Assays of Amyloid Formation on a Microfluidic Platform. Biophysical Journal, 2016, 110, 555-560.	0.5	15
281	Mechanism of biosurfactant adsorption to oil/water interfaces from millisecond scale tensiometry measurements. Interface Focus, 2017, 7, 20170013.	3.0	15
282	A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer's disease. Scientific Reports, 2020, 10, 15280.	3.3	15
283	Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32951-32960.	8.0	15
284	Protein Conjugation by Electrophilic Alkynylation Using 5-(Alkynyl)dibenzothiophenium Triflates. Bioconjugate Chemistry, 2021, 32, 1570-1575.	3.6	15
285	The binding of the small heat-shock protein $\hat{l}\pm B$ -crystallin to fibrils of $\hat{l}\pm$ -synuclein is driven by entropic forces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
286	Three-dimensional domain swapping and supramolecular protein assembly: insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2116-2123.	2.5	14
287	Sequential Release of Proteins from Structured Multishell Microcapsules. Biomacromolecules, 2017, 18, 3052-3059.	5.4	14
288	Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27578-27583.	8.0	14

#	Article	IF	Citations
289	Mechanism of droplet-formation in a supersonic microfluidic spray device. Applied Physics Letters, 2020, 116, .	3.3	14
290	Supramolecular Peptide Nanofibrils with Optimized Sequences and Molecular Structures for Efficient Retroviral Transduction. Advanced Functional Materials, 2021, 31, 2009382.	14.9	14
291	The role of clearance mechanisms in the kinetics of pathological protein aggregation involved in neurodegenerative diseases. Journal of Chemical Physics, 2021, 154, 125101.	3.0	14
292	Cooperative Assembly of Hsp70 Subdomain Clusters. Biochemistry, 2018, 57, 3641-3649.	2.5	13
293	Rapid two-dimensional characterisation of proteins in solution. Microsystems and Nanoengineering, 2019, 5, 33.	7.0	13
294	Characterizing Individual Protein Aggregates by Infrared Nanospectroscopy and Atomic Force Microscopy. Journal of Visualized Experiments, 2019, , .	0.3	13
295	A microfluidic strategy for the detection of membrane protein interactions. Lab on A Chip, 2020, 20, 3230-3238.	6.0	13
296	Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672.	5.6	13
297	Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in <i>C. elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
298	pHâ€Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide. Small, 2021, 17, e2007188.	10.0	13
299	Environmental Control of Amyloid Polymorphism by Modulation of Hydrodynamic Stress. ACS Nano, 2021, 15, 944-953.	14.6	13
300	Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. Journal of Chemical Physics, 2022, 156, 164904.	3.0	13
301	Analysis of structural order in amyloid fibrils. Nanotechnology, 2007, 18, 044031.	2.6	12
302	DNA-Coated Functional Oil Droplets. Langmuir, 2018, 34, 10073-10080.	3.5	12
303	Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	3.7	12
304	Biomembranes in bioelectronic sensing. Trends in Biotechnology, 2022, 40, 107-123.	9.3	12
305	Methods and models in neurodegenerative and systemic protein aggregation diseases. Frontiers in Bioscience, 2010, 15, 373-96.	2.1	12
306	Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Analytical Biochemistry, 2016, 504, 7-13.	2.4	11

#	Article	IF	CITATIONS
307	Protein Aggregateâ€Ligand Binding Assays Based on Microfluidic Diffusional Separation. ChemBioChem, 2016, 17, 1920-1924.	2.6	11
308	Nanoscale click-reactive scaffolds from peptide self-assembly. Journal of Nanobiotechnology, 2017, 15, 70.	9.1	11
309	On-chip measurements of protein unfolding from direct observations of micron-scale diffusion. Chemical Science, 2018, 9, 3503-3507.	7.4	11
310	Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteineâ€Selective Protein Modification and Charge Modulation. Angewandte Chemie, 2019, 131, 6712-6716.	2.0	11
311	Microfluidic Templating of Spatially Inhomogeneous Protein Microgels. Small, 2020, 16, e2000432.	10.0	11
312	Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions. Soft Matter, 2020, 16, 3082-3087.	2.7	11
313	In situ Subâ€Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. Small Methods, 2021, 5, e2001002.	8.6	11
314	Structure-specific amyloid precipitation in biofluids. Nature Chemistry, 2022, 14, 1045-1053.	13.6	11
315	Enhanced Stability of Human Prion Proteins with Two Disulfide Bridges. Biophysical Journal, 2006, 91, 1494-1500.	0.5	10
316	Imaging Amyloid Fibrils within Cells Using a Se-Labelling Strategy. Journal of Molecular Biology, 2009, 392, 868-871.	4.2	10
317	Dry-mass sensing for microfluidics. Applied Physics Letters, 2014, 105, .	3.3	10
318	Scaling and dimensionality in the chemical kinetics of protein filament formation. International Reviews in Physical Chemistry, 2016, 35, 679-703.	2.3	10
319	Rapid Growth of Acetylated Al̂²(16–20) into Macroscopic Crystals. ACS Nano, 2018, 12, 5408-5416.	14.6	10
320	One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 6739-6747.	8.0	10
321	Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection. Analytical Chemistry, 2021, 93, 2848-2853.	6.5	10
322	The unhappy chaperone. QRB Discovery, 2021, 2, .	1.6	10
323	Protein Microgels from Amyloid Fibril Networks. Advances in Experimental Medicine and Biology, 2019, 1174, 223-263.	1.6	10
324	Accelerating Reaction Rates of Biomolecules by Using Shear Stress in Artificial Capillary Systems. Journal of the American Chemical Society, 2021, 143, 16401-16410.	13.7	10

#	Article	IF	Citations
325	Phase-resolved pulsed precessional motion at a Schottky barrier. Physical Review B, 2004, 69, .	3.2	9
326	Oligomers of Heat-Shock Proteins: Structures That Don't Imply Function. PLoS Computational Biology, 2016, 12, e1004756.	3.2	9
327	Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angewandte Chemie, 2017, 129, 7858-7862.	2.0	9
328	Statistical Mechanics of Globular Oligomer Formation by Protein Molecules. Journal of Physical Chemistry B, 2018, 122, 11721-11730.	2.6	9
329	Quantitative Analysis of Diffusive Reactions at the Solid–Liquid Interface in Finite Systems. Journal of Physical Chemistry Letters, 2014, 5, 695-699.	4.6	8
330	Resolving protein mixtures using microfluidic diffusional sizing combined with synchrotron radiation circular dichroism. Lab on A Chip, 2019, 19, 50-58.	6.0	8
331	Multidimensional protein characterisation using microfluidic post-column analysis. Lab on A Chip, 2020, 20, 2663-2673.	6.0	8
332	New Frontiers for Machine Learning in Protein Science. Journal of Molecular Biology, 2021, 433, 167232.	4.2	8
333	Deformable and Robust Core–Shell Protein Microcapsules Templated by Liquid–Liquid Phaseâ€ S eparated Microdroplets. Advanced Materials Interfaces, 2021, 8, 2101071.	3.7	8
334	Microfluidic Antibody Affinity Profiling Reveals the Role of Memory Reactivation and Cross-Reactivity in the Defense Against SARS-CoV-2. ACS Infectious Diseases, 2022, 8, 790-799.	3.8	8
335	Micromechanics of soft materials using microfluidics. MRS Bulletin, 2022, 47, 119-126.	3.5	8
336	Mechanistic Models of Protein Aggregation Across Length-Scales and Time-Scales: From the Test Tube to Neurodegenerative Disease. Frontiers in Neuroscience, 0, 16 , .	2.8	8
337	Preventing peptide and protein misbehavior. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5267-5268.	7.1	7
338	Kinetics of fragmentation and dissociation of two-strand protein filaments: Coarse-grained simulations and experiments. Journal of Chemical Physics, 2016, 145, 105101.	3.0	7
339	Automated Behavioral Analysis of Large C. elegans Populations Using a Wide Field-of-view Tracking Platform. Journal of Visualized Experiments, 2018, , .	0.3	7
340	Programmable Onâ€Chip Artificial Cell Producing Postâ€Translationally Modified Ubiquitinated Protein. Small, 2019, 15, 1901780.	10.0	7
341	Autoantibodies against the prion protein in individuals with <i>PRNP</i> mutations. Neurology, 2020, 95, e2028-e2037.	1.1	7
342	Pulsed Hydrogen–Deuterium Exchange Reveals Altered Structures and Mechanisms in the Aggregation of Familial Alzheimer's Disease Mutants. ACS Chemical Neuroscience, 2021, 12, 1972-1982.	3.5	7

#	Article	IF	Citations
343	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. SSRN Electronic Journal, 0, , .	0.4	7
344	Analysis of $\hat{l}\pm B$ -crystallin polydispersity in solution through native microfluidic electrophoresis. Analyst, The, 2019, 144, 4413-4424.	3.5	6
345	A method of predicting the in vitro fibril formation propensity of $\hat{Al^2}40$ mutants based on their inclusion body levels in E. coli. Scientific Reports, 2019, 9, 3680.	3.3	6
346	Dynamics and Control of Peptide Self-Assembly and Aggregation. Advances in Experimental Medicine and Biology, 2019, 1174, 1-33.	1.6	6
347	The Pathological G51D Mutation in Alpha-Synuclein Oligomers Confers Distinct Structural Attributes and Cellular Toxicity. Molecules, 2022, 27, 1293.	3.8	6
348	Selfâ€assembled Protein Fibrilâ€metal Oxide Nanocomposites. Israel Journal of Chemistry, 2017, 57, 724-728.	2.3	5
349	Exciton Coupling of Phenylalanine Reveals Conformational Changes of Cationic Peptides. ChemistrySelect, 2017, 2, 2476-2479.	1.5	5
350	Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering. RSC Chemical Biology, 2021, 2, 1232-1238.	4.1	5
351	DNA–Liposome Hybrid Carriers for Triggered Cargo Release. ACS Applied Bio Materials, 2022, 5, 3713-3721.	4.6	5
352	Selenium-Enhanced Electron Microscopic Imaging of Different Aggregate Forms of a Segment of the Amyloid \hat{l}^2 Peptide in Cells. ACS Nano, 2012, 6, 4740-4747.	14.6	4
353	Diffuse transition state structure for the unfolding of a leucine-rich repeat protein. Physical Chemistry Chemical Physics, 2014, 16, 6448.	2.8	4
354	Dynamics of heteromolecular filament formation. Journal of Chemical Physics, 2016, 145, 175101.	3.0	4
355	Quantifying Measurement Fluctuations from Stochastic Surface Processes on Sensors with Heterogeneous Sensitivity. Physical Review Applied, 2016, 5, .	3.8	4
356	Acceleration of \hat{l} ±-synuclein aggregation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 20-21.	3.0	4
357	Universality of filamentous aggregation phenomena. Physical Review E, 2019, 99, 062415.	2.1	4
358	Machine learning-aided protein identification from multidimensional signatures. Lab on A Chip, 2021, 21, 2922-2931.	6.0	4
359	Feedback control of protein aggregation. Journal of Chemical Physics, 2021, 155, 064102.	3.0	4
360	Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors. , 2014, , .		3

#	Article	IF	Citations
361	An Environmentally Sensitive Fluorescent Dye as a Multidimensional Probe of Amyloid Formation. Journal of Physical Chemistry B, 2016, 120, 2087-2094.	2.6	3
362	Liquid–Liquid Phaseâ€Separated Systems from Reversible Gel–Sol Transition of Protein Microgels (Adv.) Tj E	TQgQ 0 0	rgBJT /Overloc
363	Sequential storage and release of microdroplets. Microsystems and Nanoengineering, 2021, 7, 76.	7.0	3
364	Nanofluidic Traps by Two-Photon Fabrication for Extended Detection of Single Macromolecules and Colloids in Solution. ACS Applied Nano Materials, 2022, 5, 1995-2005.	5.0	3
365	Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules. RSC Advances, 2014, 4, 10303-10309.	3.6	2
366	Intra-chain organisation of hydrophobic residues controls inter-chain aggregation rates of amphiphilic polymers. Journal of Chemical Physics, 2017, 146, 135102.	3.0	2
367	Microfluidic Templating: Microfluidic Templating of Spatially Inhomogeneous Protein Microgels (Small 32/2020). Small, 2020, 16, 2070178.	10.0	2
368	Imaging Alzheimer's disease-related protein aggregates in human cells using a selenium label. Journal of Physics: Conference Series, 2010, 241, 012020.	0.4	1
369	Probing Protein Aggregation with Quartz Crystal Microbalances. Methods in Molecular Biology, 2011, 752, 137-145.	0.9	1
370	Combining Single-Molecule Techniques with Microfluidics for Protein Analysis. Biophysical Journal, 2016, 110, 195a.	0.5	1
371	Rapid highly sensitive general protein quantification through on-chip chemiluminescence. Biomicrofluidics, 2021, 15, 024113.	2.4	1
372	Microchip Free-Flow Electrophoresis for Bioanalysis, Sensing, and Purification. Methods in Molecular Biology, 2022, 2394, 249-266.	0.9	1
373	Quantitative approaches for characterising fibrillar protein nanostructures. Materials Research Society Symposia Proceedings, 2010, 1274, 1.	0.1	0
374	Highly Non-linear Microfluidic Resistor Elements for Flow Rate-dependent Addressing of Microchannels. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, .	1.0	0
375	Amyloid \hat{l}^2 -Protein: The Influence of Intrinsic and Extrinsic Factors on Fibril Formation. Biophysical Journal, 2014, 106, 682a-683a.	0.5	0
376	2-Photon Lithography for Nanofluidic Lab-on-Chip Devices. Biophysical Journal, 2018, 114, 689a.	0.5	0
377	3D microfluidics spray nozzle for sample processing and materials deposition. AIP Conference Proceedings, 2019, , .	0.4	0
378	Homage to Chris Dobson. Frontiers in Molecular Biosciences, 2019, 6, 137.	3.5	0

#	Article	IF	CITATIONS
379	Chris Dobson (1949–2019). Nature Chemical Biology, 2020, 16, 105-105.	8.0	O
380	Unraveling the Physicochemical Determinants of Protein Liquid-liquid Phase Separation by Nanoscale Infrared Vibrational Spectroscopy. Bio-protocol, 2021, 11, e4122.	0.4	0