List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6165650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	of Therapeutic in Solution. Methods in Molecular Biology, 2022, 2313, 219-239.	0.9	0
2	Local disorder of the C-terminal segment of the heavy chain as a common sign of stressed antibodies evidenced with a peptide affinity probe specific to non-native IgG. International Journal of Biological Macromolecules, 2021, 182, 1697-1703.	7.5	4
3	Effect of backbone circularization on colloidal stability: Compaction of unfolded structures improves aggregation resistance of granulocyte colony-stimulating factor. International Journal of Pharmaceutics, 2021, 605, 120774.	5.2	3
4	Polyploid engineering by increasing mutant gene dosage in yeasts. Microbial Biotechnology, 2021, 14, 979-992.	4.2	4
5	Live-cell imaging to analyze intracellular aggregation of recombinant IgG in CHO cells. Cell Chemical Biology, 2021, , .	5.2	4
6	Stabilization of backboneâ€circularized protein is attained by synergistic gains in enthalpy of folded structure. FEBS Journal, 2020, 287, 1554-1575.	4.7	5
7	Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration. Nature Communications, 2020, 11, 5311.	12.8	30
8	Histidine-Mediated Intramolecular Electrostatic Repulsion for Controlling pH-Dependent Protein–Protein Interaction. ACS Chemical Biology, 2019, 14, 2729-2736.	3.4	13
9	Synthetic gene expression circuits regulating sexual reproduction. Methods in Enzymology, 2019, 621, 17-30.	1.0	4
10	In-Solution Microscopic Imaging of Fractal Aggregates of a Stressed Therapeutic Antibody. Analytical Chemistry, 2019, 91, 4640-4648.	6.5	11
11	pH-shift stress on antibodies. Methods in Enzymology, 2019, 622, 329-345.	1.0	9
12	<i>Anxa2</i> ―and <i>Ctsd</i> â€knockout CHO cell lines to diminish the risk of contamination with host cell proteins. Biotechnology Progress, 2019, 35, e2820.	2.6	16
13	C _H 2 domain orientation of human immunoglobulin G in solution: Structural comparison of glycosylated and aglycosylated Fc regions using small-angle X-ray scattering. MAbs, 2019, 11, 453-462.	5.2	7
14	Artificial Mating-Type Conversion and Repetitive Mating for Polyploid Generation. ACS Synthetic Biology, 2018, 7, 1413-1423.	3.8	9
15	Suppression of Aggregation of Therapeutic Monoclonal Antibodies during Storage by Removal of Aggregation Precursors Using a Specific Adsorbent of Non-Native IgG Conformers. Bioconjugate Chemistry, 2018, 29, 3250-3261.	3.6	7
16	Generation of ubiquitin-based binder with an inserted active peptide. Biochemical and Biophysical Research Communications, 2018, 503, 3162-3166.	2.1	1
17	Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector. Biochemical and Biophysical Research Communications, 2018, 500, 224-228.	2.1	4
18	Calibration-free concentration analysis for an analyte prone to self-association. Analytical Biochemistry, 2017, 516, 61-64.	2.4	4

#	Article	IF	CITATIONS
19	Conformational and Colloidal Stabilities of Human Immunoglobulin G Fc and Its Cyclized Variant: Independent and Compensatory Participation of Domains in Aggregation of Multidomain Proteins. Molecular Pharmaceutics, 2017, 14, 699-711.	4.6	9
20	Positive Detection of GPCR Antagonists Using a System for Inverted Expression of a Fluorescent Reporter Gene. ACS Synthetic Biology, 2017, 6, 1554-1562.	3.8	6
21	Friability Testing as a New Stress-Stability Assay for Biopharmaceuticals. Journal of Pharmaceutical Sciences, 2017, 106, 2966-2978.	3.3	27
22	AlphaScreen-based homogeneous assay using a pair of 25-residue artificial proteins for high-throughput analysis of non-native IgG. Scientific Reports, 2017, 7, 12466.	3.3	8
23	Backbone Circularization Coupled with Optimization of Connecting Segment in Effectively Improving the Stability of Granulocyte-Colony Stimulating Factor. ACS Chemical Biology, 2017, 12, 2690-2696.	3.4	17
24	Fate of a Stressed Therapeutic Antibody Tracked by Fluorescence Correlation Spectroscopy: Folded Monomers Survive Aggregation. Journal of Physical Chemistry B, 2017, 121, 8085-8093.	2.6	21
25	Surface plasmon resonance biosensing of the monomer and the linked dimer of the variants of protein G under mass transport limitation. Data in Brief, 2016, 9, 917-921.	1.0	1
26	Biosensing Probe for Quality Control Monitoring of the Structural Integrity of Therapeutic Antibodies. Analytical Chemistry, 2016, 88, 10095-10101.	6.5	17
27	Continuous crossbreeding of sake yeasts using growth selection systems for a-type and α-type cells. AMB Express, 2016, 6, 45.	3.0	17
28	Kinetics of Antibody Aggregation at Neutral pH and Ambient Temperatures Triggered by Temporal Exposure to Acid. Journal of Physical Chemistry B, 2016, 120, 9581-9589.	2.6	35
29	Adaptive Assembly: Maximizing the Potential of a Given Functional Peptide with a Tailor-Made Protein Scaffold. Chemistry and Biology, 2015, 22, 1165-1173.	6.0	4
30	Rapid Evaluation of Tyrosine Kinase Activity of Membrane-Integrated Human Epidermal Growth Factor Receptor Using the Yeast Gγ Recruitment System. ACS Synthetic Biology, 2015, 4, 421-429.	3.8	6
31	Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions. Molecular Pharmaceutics, 2015, 12, 1443-1455.	4.6	35
32	3SEA-04 The approach to the function-stability tradeoff: A case of the design of a humanized protein mimicking the albumin-binding protein(Frontiers in physical properties of proteins: challenges by) Tj ETQq0 0 0	rgBT /Over	·locg 10 Tf 50
33	3P086 Design of an Albumin-Binding Humanized Protein by Mimicking the Contact Surface of a Bacterial Albumin-Binding Domain(01F. Protein: Engineering,Poster,The 52nd Annual Meeting of the) Tj ETQq1	1 0. ∂8 431	4 rgBT /Overlo
34	Tracing Primordial Protein Evolution through Structurally Guided Stepwise Segment Elongation. Journal of Biological Chemistry, 2014, 289, 3394-3404.	3.4	14
35	Structure of the Microtubule-Binding Domain of Flagellar Dynein. Structure, 2014, 22, 1628-1638.	3.3	18
36	Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions. Journal of Biological Engineering, 2014, 8, 15.	4.7	21

#	Article	IF	CITATIONS
37	Imparting Albumin-Binding Affinity to a Human Protein by Mimicking the Contact Surface of a Bacterial Binding Protein. ACS Chemical Biology, 2014, 9, 1052-1060.	3.4	2
38	Structure-based histidine substitution for optimizing pH-sensitive Staphylococcus protein A. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 929, 155-160.	2.3	17
39	Artificial Conversion of the Mating-Type of <i>Saccharomyces cerevisiae</i> without Autopolyploidization. ACS Synthetic Biology, 2013, 2, 697-704.	3.8	12
40	Construction of new cloning vectors that employ the phytoene synthase encoding gene for color screening of cloned DNA inserts in Thermus thermophilus. Gene, 2013, 527, 655-662.	2.2	12
41	Directed Evolution for Thermostabilization of a Hygromycin B Phosphotransferase from <i>Streptomyces hygroscopicus</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 2234-2241.	1.3	10
42	Development of growth selection systems to isolate a-type or α-type of yeast cells spontaneously emerging from MATa/α diploids. Journal of Biological Engineering, 2013, 7, 27.	4.7	11
43	Yeast One-Hybrid GÎ ³ Recruitment System for Identification of Protein Lipidation Motifs. PLoS ONE, 2013, 8, e70100.	2.5	5
44	Convergent evolution in structural elements of proteins investigated using cross profile analysis. BMC Bioinformatics, 2012, 13, 11.	2.6	33
45	Aggregation factor analysis for protein formulation by a systematic approach using FTIR, SEC and design of experiments techniques. Journal of Pharmaceutical and Biomedical Analysis, 2012, 57, 143-152.	2.8	9
46	Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1645-1653.	2.6	9
47	Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus – silkworm expression system. Protein Expression and Purification, 2011, 80, 102-109.	1.3	5
48	Conserved amino acid residues in C-terminus of PERIOD 2 are involved in interaction with CRYPTOCHROME 1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 492-498.	4.1	10
49	Efficient production of human Fas receptor extracellular domain–human IgG1 heavy chain Fc domain fusion protein using baculovirus/silkworm expression system. Protein Expression and Purification, 2010, 73, 209-216.	1.3	11
50	Optimizing pH Response of Affinity between Protein G and IgG Fc. Journal of Biological Chemistry, 2009, 284, 12373-12383.	3.4	44
51	ProSeg: a database of local structures of protein segments. Journal of Computer-Aided Molecular Design, 2009, 23, 163-169.	2.9	2
52	Crystal Structure of a Ten-Amino Acid Protein. Journal of the American Chemical Society, 2008, 130, 15327-15331.	13.7	151
53	Free Energy Landscape Analysis System Based on Parallel Molecular Dynamics Simulation. IPSJ Digital Courier, 2007, 3, 757-766.	0.3	0
54	Structural Diversity of Protein Segments Follows a Power-Law Distribution. Biophysical Journal, 2006, 91, 1213-1223.	0.5	18

#	Article	IF	CITATIONS
55	Higher-order Molecular Packing in Amyloid-like Fibrils Constructed with Linear Arrangements of Hydrophobic and Hydrogen-bonding Side-chains. Journal of Molecular Biology, 2005, 348, 983-998.	4.2	55
56	10 Residue Folded Peptide Designed by Segment Statistics. Structure, 2004, 12, 1507-1518.	3.3	278
57	Thermodynamics of a β-hairpin structure: evidence for cooperative formation of folding nucleus. Journal of Molecular Biology, 2000, 295, 269-278.	4.2	163
58	Role of Side-chains in the Cooperative β-Hairpin Folding of the Short Câ^'Terminal Fragment Derived from Streptococcal Protein Gâ€. Biochemistry, 2000, 39, 6564-6571.	2.5	97
59	Fragment Reconstitution of a Small Protein: Disulfide Mutant of a Short C-Terminal Fragment Derived from Streptococcal Protein Gâ€. Biochemistry, 1999, 38, 3228-3234.	2.5	21
60	Fragment Reconstitution of a Small Protein:  Folding Energetics of the Reconstituted Immunoglobulin Binding Domain B1 of Streptococcal Protein G. Biochemistry, 1999, 38, 1203-1213.	2.5	49
61	Folding energetics of a multidomain protein, flagellin 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 293, 719-732.	4.2	17
62	Stability and Reversibility of Thermal Denaturation Are Greatly Improved by Limiting Terminal Flexibility of Escherichia coli Dihydrofolate Reductase. Journal of Biochemistry, 1996, 119, 414-420.	1.7	22
63	Thermal denaturation of photosynthetic membrane proteins from Rhodobacter sphaeroides. Thermochimica Acta, 1995, 266, 355-364.	2.7	11
64	Complement assembly of two fragments of the streptococcal protein G B1 domain in aqueous solution. FEBS Letters, 1995, 366, 99-103.	2.8	57
65	?-Helical assembly of biologically active peptides and designed helix bundle protein. Biopolymers, 1994, 34, 481-488.	2.4	13
66	Fluctuation and rotation of human growth hormone-releasing factor in the presence and the absence of phospholipid bilayer analyzed by time-resolved fluorescence depolarization. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1068, 81-86.	2.6	2
67	Design for the Peptide Analog of Calcium Binding Loops by Considering the Steric Restriction Effect of Incorporated Nonprotein Amino Acids. Chemistry Letters, 1991, 20, 757-760.	1.3	0
68	Association Characteristics of Amphiphilic α-Helices Connected by Flexible Links. Bulletin of the Chemical Society of Japan, 1991, 64, 396-402.	3.2	15
69	Role of Negative Charge on Acidic Lipids in the Interaction with Human Growth Hormone-Releasing Factor. Chemistry Letters, 1991, 20, 73-76.	1.3	2
70	Solution structure of human growth hormone-releasing factor fragment (1-29) by CD: Characteristic conformational change on phospholipid membrane. Biopolymers, 1991, 31, 869-876.	2.4	16
71	Thermal transition of a mutated dihydrofolate reductase. Thermochimica Acta, 1990, 163, 123-128.	2.7	5
72	Thermal Stability of Dihydrofolate Reductase and Its Fused Proteins with Oligopeptides. Annals of the New York Academy of Sciences, 1990, 613, 352-357.	3.8	5

#	Article	IF	CITATIONS
73	Fibrous Support Module Composed of Braided Poly(Vinyl Alcohol) Superfine Fibers. Annals of the New York Academy of Sciences, 1990, 613, 858-862.	3.8	1
74	The β-Sheet Structure-Disrupting Potential of Electron-Donor and -Acceptor Solvents and Role of Mixed Solvents in Solvation of Peptides. Bulletin of the Chemical Society of Japan, 1989, 62, 342-344.	3.2	24
75	Individuality of Amino Acid Residues in Protected Peptides. Conformational and β-Sheet Structure-Disrupted Behaviors of Resin-Bound Peptides. Bulletin of the Chemical Society of Japan, 1989, 62, 773-779.	3.2	21
76	The Electron Donor–Acceptor Interaction between Mixed Solvents and Its Influence on Their β-Sheet Structure-Disrupting Potential. Bulletin of the Chemical Society of Japan, 1989, 62, 780-785.	3.2	20
77	Infrared Spectroscopic Conformational Analysis of Polystyrene Resin-Bound Human Proinsulin C-Peptide Fragments. β-Sheet Aggregation of Peptide Chains during Solid-Phase Peptide Synthesis. Bulletin of the Chemical Society of Japan, 1988, 61, 1201-1206.	3.2	13
78	The Solubility of Peptide Intermediates in Organic Solvents. Solubilizing Potential of Hexafluoro-2-propanol. Bulletin of the Chemical Society of Japan, 1988, 61, 281-284.	3.2	53
79	The Study on Peptide and Protein Syntheses. Infrared Spectroscopic Conformational Analysis of Oligo-L-leucines Containing Only One D-Amino Acid Residue. Bulletin of the Chemical Society of Japan, 1987, 60, 4127-4131.	3.2	10
80	Design of the Synthetic Route for Peptides and Proteins Based on the Solubility Prediction Method. I. Synthesis and Solubility Properties of Human Proinsulin C-Peptide Fragments. Bulletin of the Chemical Society of Japan, 1986, 59, 2433-2438.	3.2	28
81	Infrared Absorption Study of Human Proinsulin C-Peptide Fragments in the Solid State. Bulletin of the Chemical Society of Japan, 1986, 59, 2439-2443.	3.2	19
82	Infrared Absorption Study of Human Proinsulin C-Peptide Fragments in Dichloromethane. Bulletin of the Chemical Society of Japan, 1986, 59, 2445-2449.	3.2	20