## Pranita P Sarangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6165209/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | <i>In silico</i> identification and characterization of small-molecule inhibitors specific to RhoG/Rac1 signaling pathway. Journal of Biomolecular Structure and Dynamics, 2023, 41, 560-580.                                       | 3.5 | 8         |
| 2  | Yoga and meditation, an essential tool to alleviate stress and enhance immunity to emerging<br>infections: A perspective on the effect of COVID-19 pandemic on students. Brain, Behavior, & Immunity -<br>Health, 2022, 20, 100420. | 2.5 | 17        |
| 3  | A Câ€ŧerminal fragment of adhesion protein fibulinâ€7 inhibits growth of murine breast tumor by regulating macrophage reprogramming. FEBS Journal, 2021, 288, 803-817.                                                              | 4.7 | 10        |
| 4  | Climate change: how it impacts the emergence, transmission, resistance and consequences of viral infections in animals and plants. Critical Reviews in Microbiology, 2021, 47, 307-322.                                             | 6.1 | 11        |
| 5  | Functional and Therapeutic Relevance of Rho GTPases in Innate Immune Cell Migration and Function during Inflammation: An In Silico Perspective. Mediators of Inflammation, 2021, 2021, 1-10.                                        | 3.0 | 6         |
| 6  | Inflammatory Monocytes and Subsets of Macrophages with Distinct Surface Phenotype Correlate<br>with Specific Integrin Expression Profile during Murine Sepsis. Journal of Immunology, 2021, 207,<br>ji2000821.                      | 0.8 | 6         |
| 7  | Did Climate Change Influence the Emergence, Transmission, and Expression of the COVID-19 Pandemic?.<br>Frontiers in Medicine, 2021, 8, 769208.                                                                                      | 2.6 | 17        |
| 8  | Electrostatic Surface Potential of Macrophages Correlates with Their Functional Phenotype.<br>Inflammation, 2020, 43, 641-650.                                                                                                      | 3.8 | 5         |
| 9  | The role of adhesion protein Fibulin7 in development and diseases. Molecular Medicine, 2020, 26, 47.                                                                                                                                | 4.4 | 10        |
| 10 | A C-terminal fragment of adhesion protein Fibulin7 regulates neutrophil migration and functions and improves survival in LPS induced systemic inflammation. Cytokine, 2020, 131, 155113.                                            | 3.2 | 3         |
| 11 | Investigation of Extracellular Matrix Protein Expression Dynamics Using Murine Models of Systemic<br>Inflammation. Inflammation, 2019, 42, 2020-2031.                                                                               | 3.8 | 5         |
| 12 | Characterization of difference in structure and function of fresh and mastitic bovine milk fat globules. PLoS ONE, 2019, 14, e0221830.                                                                                              | 2.5 | 12        |
| 13 | Cell adhesion protein fibulinâ€7 and its Câ€terminal fragment negatively regulate monocyte and macrophage migration and functions in vitro and in vivo. FASEB Journal, 2018, 32, 4889-4898.                                         | 0.5 | 17        |
| 14 | Activated Protein C Attenuates Severe Inflammation by Targeting VLA-3high Neutrophil Subpopulation in Mice. Journal of Immunology, 2017, 199, 2930-2936.                                                                            | 0.8 | 6         |
| 15 | Role of cellular events in the pathophysiology of sepsis. Inflammation Research, 2016, 65, 853-868.                                                                                                                                 | 4.0 | 54        |
| 16 | Sepsis lethality via exacerbated tissue infiltration and TLR-induced cytokine production by neutrophils<br>is integrin α3l²1-dependent. Blood, 2014, 124, 3515-3523.                                                                | 1.4 | 53        |
| 17 | Role of Î <sup>2</sup> 1 Integrin in Tissue Homing of Neutrophils During Sepsis. Shock, 2012, 38, 281-287.                                                                                                                          | 2.1 | 28        |
| 18 | Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels.<br>Journal of Experimental Medicine, 2012, 209, 1349-1362.                                                                            | 8.5 | 115       |

Pranita P Sarangi

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels.<br>Journal of Cell Biology, 2012, 197, i11-i11.                                                                                                        | 5.2 | 0         |
| 20 | Activated protein C action in inflammation. British Journal of Haematology, 2010, 148, 817-833.                                                                                                                                                      | 2.5 | 65        |
| 21 | Herpetic keratitis. , 2010, , 91-97.                                                                                                                                                                                                                 |     | 7         |
| 22 | Control of viral immunoinflammatory lesions by manipulating CD200:CD200 receptor interaction.<br>Clinical Immunology, 2009, 131, 31-40.                                                                                                              | 3.2 | 13        |
| 23 | Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood, 2009, 113, 4078-4085.                                                                                                                                  | 1.4 | 108       |
| 24 | Enhanced viral immunoinflammatory lesions in mice lacking IL-23 responses. Microbes and Infection, 2008, 10, 302-312.                                                                                                                                | 1.9 | 26        |
| 25 | IL-10 and Natural Regulatory T Cells: Two Independent Anti-Inflammatory Mechanisms in Herpes Simplex<br>Virus-Induced Ocular Immunopathology. Journal of Immunology, 2008, 180, 6297-6306.                                                           | 0.8 | 55        |
| 26 | In Vitro-Generated Antigen-Specific CD4 <sup>+</sup> CD25 <sup>+</sup> Foxp3 <sup>+</sup> Regulatory<br>T Cells Control the Severity of Herpes Simplex Virus-Induced Ocular Immunoinflammatory Lesions.<br>Journal of Virology, 2008, 82, 6838-6851. | 3.4 | 68        |
| 27 | Non-mitogenic Anti-CD3F(ab′)2Monoclonal Antibody: A Novel Approach to Control Herpetic Stromal<br>Keratitis. , 2008, 49, 5425.                                                                                                                       |     | 3         |
| 28 | Innate Recognition Network Driving Herpes Simplex Virus-Induced Corneal Immunopathology: Role of<br>the Toll Pathway in Early Inflammatory Events in Stromal Keratitis. Journal of Virology, 2007, 81,<br>11128-11138.                               | 3.4 | 78        |
| 29 | Regulatory T cells in virus infections. Immunological Reviews, 2006, 212, 272-286.                                                                                                                                                                   | 6.0 | 246       |
| 30 | Vascular Endothelial Growth Factor Receptor 2-Based DNA Immunization Delays Development of<br>Herpetic Stromal Keratitis by Antiangiogenic Effects. Journal of Immunology, 2006, 177, 4122-4131.                                                     | 0.8 | 17        |
| 31 | Depletion of MCP-1 increases development of herpetic stromal keratitis by innate immune modulation.<br>Journal of Leukocyte Biology, 2006, 80, 1405-1415.                                                                                            | 3.3 | 23        |
| 32 | In Vivo Kinetics of GITR and GITR Ligand Expression and Their Functional Significance in Regulating Viral Immunopathology. Journal of Virology, 2005, 79, 11935-11942.                                                                               | 3.4 | 66        |