
Andreas Linkermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensing plasma membrane pore formation induces chemokine production in survivors of regulated necrosis. Developmental Cell, 2022, 57, 228-245.e6.	7.0	20
2	Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss. Journal of the American Society of Nephrology: JASN, 2022, 33, 472-486.	6.1	71
3	Dipeptidase-1 governs renal inflammation during ischemia reperfusion injury. Science Advances, 2022, 8, eabm0142.	10.3	28
4	Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor–induced dipeptidase-1 expression and glutathione depletion. Science Advances, 2022, 8, eabl8920.	10.3	39
5	Targeting ferroptosis protects against experimental (multi)organ dysfunction and death. Nature Communications, 2022, 13, 1046.	12.8	60
6	Rubicon-deficiency sensitizes mice to mixed lineage kinase domain-like (MLKL)-mediated kidney ischemia-reperfusion injury. Cell Death and Disease, 2022, 13, 236.	6.3	3
7	COVID-19 and Diabetic Nephropathy. Hormone and Metabolic Research, 2022, 54, 510-513.	1.5	4
8	Schwann cell necroptosis in diabetic neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2204049119.	7.1	5
9	Induction of ferroptosis selectively eliminates senescent tubular cells. American Journal of Transplantation, 2022, 22, 2158-2168.	4.7	20
10	SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut, 2021, 70, 485-498.	12.1	39
11	TYK2 licenses non-canonical inflammasome activation during endotoxemia. Cell Death and Differentiation, 2021, 28, 748-763.	11.2	16
12	The transCampus Metabolic Training Programme Explores the Link of SARS-CoV-2 Virus to Metabolic Disease. Hormone and Metabolic Research, 2021, 53, 204-206.	1.5	2
13	Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. ELife, 2021, 10, .	6.0	58
14	BEX1 Is Differentially Expressed in Aldosterone-Producing Adenomas and Protects Human Adrenocortical Cells From Ferroptosis. Hypertension, 2021, 77, 1647-1658.	2.7	8
15	Viral infiltration of pancreatic islets in patients with COVID-19. Nature Communications, 2021, 12, 3534.	12.8	120
16	The role of regulated necrosis in endocrine diseases. Nature Reviews Endocrinology, 2021, 17, 497-510.	9.6	35
17	Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nature Communications, 2021, 12, 4402.	12.8	116
18	A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis. Nature Communications, 2021, 12, 5078.	12.8	45

#	Article	IF	CITATIONS
19	The key role of NLRP3 and STING in APOL1-associated podocytopathy. Journal of Clinical Investigation, 2021, 131, .	8.2	66
20	COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes and Endocrinology,the, 2021, 9, 786-798.	11.4	155
21	Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation. Science Immunology, 2021, 6, eabf7473.	11.9	15
22	A tissue-bioengineering strategy for modeling rare human kidney diseases in vivo. Nature Communications, 2021, 12, 6496.	12.8	14
23	20 years of Developmental Cell: Looking forward. Developmental Cell, 2021, 56, 3185-3191.	7.0	0
24	Pathophysiology of Cancer Cell Death. , 2020, , 74-83.e4.		2
25	Caspase-8–dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Science Advances, 2020, 6, .	10.3	123
26	Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Reviews of Physiology, Biochemistry and Pharmacology, 2020, 177, 53-81.	1.6	8
27	Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circulation Research, 2020, 127, 486-501.	4.5	377
28	Precondition your donor pig for your successful allograft!. American Journal of Transplantation, 2020, 20, 3275-3276.	4.7	0
29	Ferroptosis and Necroptosis in the Kidney. Cell Chemical Biology, 2020, 27, 448-462.	5.2	137
30	Stress will kill you anyway!. Cell Death and Disease, 2020, 11, 218.	6.3	2
31	Der Verlust von intestinal epithelialem SETDB1 führt zu fehlender Repression endogener Retroviren, Genotoxizitäund intestinaler Entzündung. Zeitschrift Fur Gastroenterologie, 2020, 58, .	0.5	0
32	Regulated Necrosis and Its Immunogenicity. , 2019, , 197-205.e1.		2
33	Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiological Reviews, 2019, 99, 1765-1817.	28.8	550
34	Mitochondria Permeability Transition versus Necroptosis in Oxalate-Induced AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 1857-1869.	6.1	81
35	Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22269-22274.	7.1	81
36	Gasdermin D and pyroptosis in acute kidney injury. Kidney International, 2019, 96, 1061-1063.	5.2	24

#	Article	IF	CITATIONS
37	Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2672-2680.	7.1	1,174
38	Don't trick me twice!. Kidney International, 2019, 95, 736-738.	5.2	4
39	HLA class II antibodies induce necrotic cell death in human endothelial cells via a lysosomal membrane permeabilization-mediated pathway. Cell Death and Disease, 2019, 10, 235.	6.3	19
40	The pathological features of regulated necrosis. Journal of Pathology, 2019, 247, 697-707.	4.5	114
41	Prominin-2 Suppresses Ferroptosis Sensitivity. Developmental Cell, 2019, 51, 548-549.	7.0	18
42	The clinical relevance of necroinflammation—highlighting the importance of acute kidney injury and the adrenal glands. Cell Death and Differentiation, 2019, 26, 68-82.	11.2	26
43	Death and fireâ€"the concept of necroinflammation. Cell Death and Differentiation, 2019, 26, 1-3.	11.2	31
44	Stress-inducible-stem cells: a new view on endocrine, metabolic and mental disease?. Molecular Psychiatry, 2019, 24, 2-9.	7.9	21
45	Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. Journal of Clinical Investigation, 2019, 129, 2293-2304.	8.2	283
46	Determination of the Subcellular Localization and Mechanism of Action of Ferrostatins in Suppressing Ferroptosis. ACS Chemical Biology, 2018, 13, 1013-1020.	3.4	229
47	Phenytoin inhibits necroptosis. Cell Death and Disease, 2018, 9, 359.	6.3	50
48	Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death and Disease, 2018, 9, 118.	6.3	23
49	Immunological consequences of kidney cell death. Cell Death and Disease, 2018, 9, 114.	6.3	64
50	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
51	TWEAK and RIPK1 mediate a second wave of cell death during AKI. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4182-4187.	7.1	112
52	We AIM2 Inflame. Journal of the American Society of Nephrology: JASN, 2018, 29, 1077-1079.	6.1	4
53	TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nature Cell Biology, 2018, 20, 1389-1399.	10.3	198
54	The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Science Translational Medicine, 2018, 10, .	12.4	84

#	Article	IF	CITATIONS
55	Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death and Disease, 2018, 9, 595.	6.3	106
56	Regulated Cell Death Seen through the Lens of Islet Transplantation. Cell Transplantation, 2018, 27, 890-901.	2.5	38
57	Cell Death Pathways Drive Necroinflammation during Acute Kidney Injury. Nephron, 2018, 140, 144-147.	1.8	38
58	Origin and Consequences of Necroinflammation. Physiological Reviews, 2018, 98, 727-780.	28.8	147
59	Assessment of In Vivo Kidney Cell Death: Acute Kidney Injury. Methods in Molecular Biology, 2018, 1857, 135-144.	0.9	4
60	Assessment of In Vivo Kidney Cell Death: Glomerular Injury. Methods in Molecular Biology, 2018, 1857, 145-151.	0.9	0
61	The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis. Oncotarget, 2018, 9, 12941-12958.	1.8	9
62	Ferroptosis, but Not Necroptosis, Is Important in Nephrotoxic Folic Acid–Induced AKI. Journal of the American Society of Nephrology: JASN, 2017, 28, 218-229.	6.1	356
63	Back to the roots of regulated necrosis. Journal of Cell Biology, 2017, 216, 303-304.	5.2	5
64	Gimme a complex! Resident mononuclear phagocytes in the kidney as monitors of circulating antigens and immune complexes. Kidney International, 2017, 91, 267-269.	5.2	1
65	Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 782-796.	4.1	32
66	The in vivo evidence for regulated necrosis. Immunological Reviews, 2017, 277, 128-149.	6.0	92
67	Heavy metal suicide. American Journal of Physiology - Renal Physiology, 2017, 313, F959-F960.	2.7	0
68	ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell, 2017, 169, 286-300.e16.	28.9	477
69	Novel Application of Localized Nanodelivery of Anti-Interleukin-6 Protects Organ Transplant From Ischemia-Reperfusion Injuries. American Journal of Transplantation, 2017, 17, 2326-2337.	4.7	30
70	Testing the Efficacy of Contrast-Enhanced Ultrasound in Detecting Transplant Rejection Using a Murine Model of Heart Transplantation. American Journal of Transplantation, 2017, 17, 1791-1801.	4.7	10
71	Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171, 273-285.	28.9	4,081
72	Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9618-E9625.	7.1	197

#	Article	IF	CITATIONS
73	Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death and Disease, 2017, 8, e2904-e2904.	6.3	69
74	Ca2+ signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cellular and Molecular Life Sciences, 2017, 74, 173-181.	5.4	39
75	P2X1, P2X4, and P2X7 Receptor Knock Out Mice Expose Differential Outcome of Sepsis Induced by α-Haemolysin Producing Escherichia coli. Frontiers in Cellular and Infection Microbiology, 2017, 7, 113.	3.9	39
76	Die later with ESCRT!. Oncotarget, 2017, 8, 41790-41791.	1.8	4
77	The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. Journal of Clinical Investigation, 2016, 126, 4346-4360.	8.2	130
78	Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy, 2016, 12, 833-849.	9.1	52
79	Generation of small molecules to interfere with regulated necrosis. Cellular and Molecular Life Sciences, 2016, 73, 2251-2267.	5.4	63
80	This thought is as a death. Cellular and Molecular Life Sciences, 2016, 73, 2123-2124.	5.4	1
81	PMA and crystalâ€induced neutrophil extracellular trap formation involves RIPK1â€RIPK3â€MLKL signaling. European Journal of Immunology, 2016, 46, 223-229.	2.9	200
82	DAMP—Induced Allograft and Tumor Rejection: The Circle Is Closing. American Journal of Transplantation, 2016, 16, 3322-3337.	4.7	61
83	Welcome to the Jungle: The Kidney during Sepsis. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 649-650.	5.6	1
84	Transplantation and Damage-Associated Molecular Patterns (DAMPs). American Journal of Transplantation, 2016, 16, 3338-3361.	4.7	125
85	The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nature Communications, 2016, 7, 11869.	12.8	68
86	An Overview of Pathways of Regulated Necrosis in Acute Kidney Injury. Seminars in Nephrology, 2016, 36, 139-152.	1.6	65
87	Introduction: Toward an Anti–Cell Death Therapy for Kidney Transplantation and Kidney Diseases. Seminars in Nephrology, 2016, 36, 137-138.	1.6	2
88	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
89	Redox homeostasis, T cells and kidney diseases: three faces in the dark. CKJ: Clinical Kidney Journal, 2016, 9, 1-10.	2.9	11
90	Post-bone marrow transplant thrombotic microangiopathy. Bone Marrow Transplantation, 2016, 51, 891-897.	2.4	26

#	Article	IF	CITATIONS
91	"Death is my Heirâ€â€"Ferroptosis Connects Cancer Pharmacogenomics and Ischemia-Reperfusion Injury. Cell Chemical Biology, 2016, 23, 202-203.	5.2	41
92	Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nature Communications, 2016, 7, 10274.	12.8	220
93	Nonapoptotic cell death in acute kidney injury and transplantation. Kidney International, 2016, 89, 46-57.	5.2	105
94	Catch me if you can: targeting the mitochondrial permeability transition pore in myocardial infarction. Cell Death and Differentiation, 2016, 23, 1-2.	11.2	27
95	Necroinflammation in Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 27-39.	6.1	180
96	A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death and Disease, 2015, 6, e1767-e1767.	6.3	157
97	Inhibition of insulin/ <scp>IGF</scp> â€1 receptor signaling protects from mitochondriaâ€mediated kidneyÂfailure. EMBO Molecular Medicine, 2015, 7, 275-287.	6.9	61
98	Emerging Therapies Targeting Intra-Organ Inflammation in Transplantation. American Journal of Transplantation, 2015, 15, 305-311.	4.7	26
99	Take my breath away: necrosis in kidney transplants kills the lungs!. Kidney International, 2015, 87, 680-682.	5.2	6
100	Role of necroptosis in the pathogenesis of solid organ injury. Cell Death and Disease, 2015, 6, e1975-e1975.	6.3	122
101	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11.2	811
102	Phosphorylated MLKL causes plasma membrane rupture. Molecular and Cellular Oncology, 2014, 1, e29915.	0.7	8
103	The fire within: pyroptosis in the kidney. American Journal of Physiology - Renal Physiology, 2014, 306, F168-F169.	2.7	25
104	RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovascular Research, 2014, 103, 206-216.	3.8	257
105	TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cellular and Molecular Life Sciences, 2014, 71, 331-348.	5.4	151
106	Molecular mechanisms of regulated necrosis. Seminars in Cell and Developmental Biology, 2014, 35, 24-32.	5.0	206
107	Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 2014, 15, 135-147.	37.0	1,373
108	Necroptosis. New England Journal of Medicine, 2014, 370, 455-465.	27.0	919

#	Article	IF	CITATIONS
109	Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16836-16841.	7.1	801
110	Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nature Reviews Immunology, 2014, 14, 759-767.	22.7	404
111	Regulated Cell Death in AKI. Journal of the American Society of Nephrology: JASN, 2014, 25, 2689-2701.	6.1	423
112	Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models. Journal of the American Chemical Society, 2014, 136, 4551-4556.	13.7	738
113	Abstract SY29-04: Beyond necroptosis - regulated necrosis in the kidney. , 2014, , .		1
114	RIPK3-Mediated Necroptosis Promotes Donor Kidney Inflammatory Injury and Reduces Allograft Survival. American Journal of Transplantation, 2013, 13, 2805-2818.	4.7	181
115	Necroptosis in Immunity and Ischemia-Reperfusion Injury. American Journal of Transplantation, 2013, 13, 2797-2804.	4.7	150
116	Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Reports, 2013, 5, 878-885.	6.4	240
117	The RIP1-Kinase Inhibitor Necrostatin-1 Prevents Osmotic Nephrosis and Contrast-Induced AKI in Mice. Journal of the American Society of Nephrology: JASN, 2013, 24, 1545-1557.	6.1	111
118	The Authors Reply:. Kidney International, 2013, 83, 531.	5.2	1
119	Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proceedings of the United States of America, 2013, 110, 12024-12029.	7.1	485
120	The Novel Therapeutic Effect of Phosphoinositide 3-Kinase-Î ³ Inhibitor AS605240 in Autoimmune Diabetes. Diabetes, 2012, 61, 1509-1518.	0.6	37
121	Dichotomy between RIP1- and RIP3-Mediated Necroptosis in Tumor Necrosis Factor-α-Induced Shock. Molecular Medicine, 2012, 18, 577-586.	4.4	127
122	Programmed necrosis in acute kidney injury. Nephrology Dialysis Transplantation, 2012, 27, 3412-3419.	0.7	102
123	Rip1 (Receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney International, 2012, 81, 751-761.	5.2	389
124	The APOL1 Genotype of African American Kidney Transplant Recipients Does Not Impact 5-Year Allograft Survival. American Journal of Transplantation, 2012, 12, 1924-1928.	4.7	161
125	Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure. Kidney International, 2011, 79, 169-178.	5.2	55
126	Donor Antioxidant Strategy Prolongs Cardiac Allograft Survival by Attenuating Tissue Dendritic Cell Immunogenicityâ€. American Journal of Transplantation, 2011, 11, 348-355.	4.7	18

#	Article	IF	CITATIONS
127	The adapter protein Nck: Role of individual SH3 and SH2 binding modules for protein interactions in T lymphocytes. Protein Science, 2010, 19, 658-669.	7.6	37
128	A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice. Diabetes, 2010, 59, 2253-2264.	0.6	62
129	Effective Blockage of Both the Extrinsic and Intrinsic Pathways of Apoptosis in Mice by TAT-crmA. Journal of Biological Chemistry, 2010, 285, 19997-20005.	3.4	31
130	Identification of interaction partners for individual SH3 domains of Fas ligand associated members of the PCH protein family in T lymphocytes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 168-176.	2.3	22
131	Organ Recipients Suffering From Undifferentiated Neuroendocrine Small-Cell Carcinoma of Donor Origin: A Case Report. Transplantation Proceedings, 2009, 41, 2639-2642.	0.6	11
132	Metabolic and Immunological Features of the Failing Islet-Transplanted Patient. Diabetes Care, 2008, 31, 436-438.	8.6	23
133	Characterization of Donor Dendritic Cells and Enhancement of Dendritic Cell Efflux With cc-Chemokine Ligand 21: A Novel Strategy to Prolong Islet Allograft Survival. Diabetes, 2007, 56, 912-920.	0.6	38
134	The adaptor protein Nck interacts with Fas ligand: Guiding the death factor to the cytotoxic immunological synapse. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5911-5916.	7.1	57
135	Considering Fas ligand as a target for therapy. Expert Opinion on Therapeutic Targets, 2005, 9, 119-134.	3.4	37
136	Slowly getting a clue on CD95 ligand biology. Biochemical Pharmacology, 2003, 66, 1417-1426.	4.4	24
137	The Fas ligand as a cell death factor and signal transducer. Signal Transduction, 2003, 3, 33-46.	0.4	16
138	CD95 ligand - death factor and costimulatory molecule?. Cell Death and Differentiation, 2003, 10, 1215-1225.	11.2	75
139	The Role of CC Chemokine Receptor 5 (CCR5) in Islet Allograft Rejection. Diabetes, 2002, 51, 2489-2495.	0.6	82
140	The Role of Autoimmunity in Islet Allograft Destruction: Major Histocompatibility Complex Class II Matching Is Necessary for Autoimmune Destruction of Allogeneic Islet Transplants After T-Cell Costimulatory Blockade. Diabetes, 2002, 51, 3202-3210.	0.6	60
141	ANGIOTENSIN GENE POLYMORPHISM AS A DETERMINANT OF POSTTRANSPLANTATION RENAL DYSFUNCTION AND HYPERTENSION1,2. Transplantation, 2001, 72, 726-729.	1.0	42