
Andrew B Lowe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6163680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tetrazole as a Carboxylic Acid Isostere and the Synthesis of All Amineâ€Based Polyampholytes. Macromolecular Rapid Communications, 2022, , 2200096.	2.0	2
2	A scoping review protocol on in vivo human plastic exposure and health impacts. Systematic Reviews, 2022, 11, .	2.5	3
3	Self-healing hydrophobic POSS-functionalized fluorinated copolymers <i>via</i> RAFT polymerization and dynamic Diels–Alder reaction. Polymer Chemistry, 2021, 12, 876-884.	1.9	21
4	(η ⁴ -Tetrafluorobenzobarrelene)-η ¹ -((tri-4-fluorophenyl)phosphine)-η ¹ - A Catalyst for the Living Polymerization of Phenylacetylenes. Macromolecules, 2021, 54, 6191-6203.	(2-phenylpho 2 .2	enyl)rhodium(
5	Selfâ€Healable Hydrophobic Material Based on Anthracenyl Functionalized Fluorous Block Copolymers via Reversible Additionâ€Fragmentation Chain Transfer Polymerization and Rapid Diels–Alder Reaction. Macromolecular Materials and Engineering, 2021, 306, 2100307.	1.7	1
6	Polymerizations Mediated by Wellâ€Defined Rhodium Complexes. Angewandte Chemie - International Edition, 2020, 59, 5008-5021.	7.2	33
7	Rh(I)(2,5-norbornadiene)(biphenyl)(<i>tris</i> (4-fluorophenyl)phosphine): Synthesis, Characterization, and Application as an Initiator in the Stereoregular (Co)Polymerization of Phenylacetylenes. ACS Macro Letters, 2020, 9, 56-60.	2.3	18
8	Durch definierte Rhodiumkomplexe vermittelte Polymerisationen. Angewandte Chemie, 2020, 132, 5040-5053.	1.6	11
9	Luminescent Copolymerâ€Rhenium(I) Hybrid Materials via Picolylamineâ€Modified Poly(pentafluorophenyl) Tj	ETQq1110.	784314 rgBT
10	Rhenium(I)-tetrazolato functional luminescent polymers: Organic-inorganic hybrids via RAFT and post-polymerization modification. European Polymer Journal, 2020, 126, 109559.	2.6	5
11	Tetrazole functional copolymers: Facile access to well-defined Rhenium(I)-Polymeric luminescent materials. Polymer, 2020, 198, 122522.	1.8	9
12	POSS and fluorine containing nanostructured block copolymer; Synthesis via RAFT polymerization and its application as hydrophobic coating material. European Polymer Journal, 2020, 131, 109679.	2.6	12
13	A (2-(naphthalen-2-yl)phenyl)rhodium(i) complex formed by a proposed intramolecular 1,4-ortho-to-ortho′ Rh metal-atom migration and its efficacy as an initiator in the controlled stereospecific polymerisation of phenylacetylene. Dalton Transactions, 2019, 48, 16437-16447.	1.6	10
14	Rhodium(I)â€Î±â€Phenylvinylfluorenyl Complexes: Synthesis, Characterization, and Evaluation as Initiators in the Stereospecific Polymerization of Phenylacetylene. European Journal of Inorganic Chemistry, 2019, 2019, 592-601.	1.0	9
15	Stimulusâ€Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Selfâ€assembly (PISA). Macromolecular Rapid Communications, 2017, 38, 1600528.	2.0	111
16	Stimulus-responsive polymers. Polymer Chemistry, 2017, 8, 10-11.	1.9	50
17	Reactive Conjugated Polymers: Synthesis, Modification, and Electrochemical Properties of Polypentafluorophenylacetylene (Co)Polymers. Macromolecular Rapid Communications, 2017, 38, 1600450.	2.0	22
18	RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly. Polymer, 2016, 106, 161-181.	1.8	139

#	Article	IF	CITATIONS
19	Triply responsive soft matter nanoparticles based on poly[oligo(ethylene glycol) methyl ether methacrylate- <i>block</i> -3-phenylpropyl methacrylate] copolymers. Polymer Chemistry, 2016, 7, 2740-2750.	1.9	24
20	Synthesis and characterisation of non-ionic AB-diblock nanoparticles prepared by RAFT dispersion polymerization with polymerization-induced self-assembly. RSC Advances, 2016, 6, 28130-28139.	1.7	13
21	Design of Thermoresponsive Polymers with Aqueous LCST, UCST, or Both: Modification of a Reactive Poly(2-vinyl-4,4-dimethylazlactone) Scaffold. Macromolecules, 2016, 49, 672-680.	2.2	88
22	Microwave-assisted synthesis of block copolymer nanoparticles via RAFT with polymerization-induced self-assembly in methanol. Polymer Chemistry, 2016, 7, 297-301.	1.9	52
23	Soft Matter Nanoparticles with Reactive Coronal Pentafluorophenyl Methacrylate Residues via Non-Polar RAFT Dispersion Polymerization and Polymerization-Induced Self-Assembly. Journal of Polymer Science Part A, 2015, 53, 2326-2335.	2.5	48
24	Thiol-reactive Passerini-methacrylates and polymorphic surface functional soft matter nanoparticles via ethanolic RAFT dispersion polymerization and post-synthesis modification. Polymer Chemistry, 2015, 6, 1928-1931.	1.9	55
25	Synthesis of poly(stearyl methacrylate-b-3-phenylpropyl methacrylate) nanoparticles in n-octane and associated thermoreversible polymorphism. RSC Advances, 2015, 5, 17636-17646.	1.7	61
26	Simultaneous ROMP and titania sol–gel reactions and nanodispersed functional organic–inorganic composite hybrid materials. Journal of Materials Chemistry C, 2015, 3, 693-702.	2.7	5
27	RAFT Dispersion Polymerization in Nonpolar Media: Polymerization of 3-Phenylpropyl Methacrylate in <i>n</i> -Tetradecane with Poly(stearyl methacrylate) Homopolymers as Macro Chain Transfer Agents. Macromolecules, 2015, 48, 236-244.	2.2	129
28	Ethanolic RAFT Dispersion Polymerization of 2-(Naphthalen-2-yloxy)ethyl Methacrylate and 2-Phenoxyethyl Methacrylate with Poly[2-(dimethylamino)ethyl Methacrylate] Macro-Chain Transfer Agents. Australian Journal of Chemistry, 2015, 68, 939.	0.5	20
29	The synthesis and aqueous solution properties of sulfobutylbetaine (co)polymers: comparison of synthetic routes and tuneable upper critical solution temperatures. Polymer Chemistry, 2015, 6, 5705-5718.	1.9	92
30	Nanoparticles Based on Star Polymers as Theranostic Vectors: Endosomalâ€Triggered Drug Release Combined with MRI Sensitivity. Advanced Healthcare Materials, 2015, 4, 148-156.	3.9	52
31	pH-, thermo- and electrolyte-responsive polymer gels derived from a well-defined, RAFT-synthesized, poly(2-vinyl-4,4-dimethylazlactone) homopolymer via one-pot post-polymerization modification. European Polymer Journal, 2015, 62, 204-213.	2.6	18
32	RAFT-prepared α-difunctional poly(2-vinyl-4,4-dimethylazlactone)s and their derivatives: synthesis and effect of end-groups on aqueous inverse temperature solubility. Polymer Chemistry, 2015, 6, 118-127.	1.9	13
33	<scp>ROMP</scp> synthesis of novel thermoâ€, p <scp>H</scp> â€, and saltâ€responsive (co)polymers containing the morpholino functional group. Journal of Polymer Science Part A, 2015, 53, 50-58.	2.5	6
34	Macromol. Rapid Commun. 8/2014. Macromolecular Rapid Communications, 2014, 35, 848-848.	2.0	0
35	Novel α,αâ€Bischolesteryl Functional (Co)Polymers: RAFT Radical Polymerization Synthesis and Preliminary Solution Characterization. Macromolecular Rapid Communications, 2014, 35, 813-820.	2.0	10
36	Thiolâ€Michael coupling and ringâ€opening metathesis polymerization: facile access to functional <i>exo</i> â€7â€oxanorbornene dendron macromonomers. Polymer International, 2014, 63, 1174-1183.	1.6	11

#	Article	IF	CITATIONS
37	Combining Ringâ€Opening Metathesis Polymerization and Thiolâ€Ene Coupling Chemistries: Facile Access to Novel Functional Linear and Nonlinear Macromolecules. Macromolecular Rapid Communications, 2014, 35, 391-404.	2.0	31
38	Thiol–ene "click―reactions and recent applications in polymer and materials synthesis: a first update. Polymer Chemistry, 2014, 5, 4820-4870.	1.9	648
39	Polymerization-induced self-assembly: ethanolic RAFT dispersion polymerization of 2-phenylethyl methacrylate. Polymer Chemistry, 2014, 5, 2342-2351.	1.9	121
40	RAFT dispersion polymerization of 3-phenylpropyl methacrylate with poly[2-(dimethylamino)ethyl methacrylate] macro-CTAs in ethanol and associated thermoreversible polymorphism. Soft Matter, 2014, 10, 5787-5796.	1.2	84
41	ROMP (co)polymers with pendent alkyne side groups: post-polymerization modification employing thiol–yne and CuAAC coupling chemistries. Polymer Chemistry, 2014, 5, 5339-5349.	1.9	16
42	Functional α,ï‰-dienes via thiol-Michael chemistry: synthesis, oxidative protection, acyclic diene metathesis (ADMET) polymerization and radical thiol–ene modification. Polymer Chemistry, 2014, 5, 6225-6235.	1.9	20
43	Mechano-responsive polymer solutions based on CO ₂ supersaturation: shaking-induced phase transitions and self-assembly or dissociation of polymeric nanoparticles. Chemical Communications, 2014, 50, 9561-9564.	2.2	15
44	Postpolymerization synthesis of (bis)amide (co)polymers: Thermoresponsive behavior and self-association. Polymer, 2014, 55, 4425-4431.	1.8	19
45	Thiol-yne â€~click'/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer, 2014, 55, 5517-5549.	1.8	254
46	The precise molecular location of gadolinium atoms has a significant influence on the efficacy of nanoparticulate MRI positive contrast agents. Polymer Chemistry, 2014, 5, 2592-2601.	1.9	44
47	Amidine functionality as a stimulus-responsive building block. Chemical Society Reviews, 2013, 42, 7326.	18.7	94
48	Factors influencing the synthesis and the post-modification of PEGylated pentafluorophenyl acrylate containing copolymers. European Polymer Journal, 2013, 49, 3060-3071.	2.6	27
49	Nucleophilic thiol-Michael chemistry and hyperbranched (co)polymers: synthesis and ring-opening metathesis (co)polymerization of novel difunctional exo-7-oxanorbornenes with in situ inimer formation. Polymer Chemistry, 2013, 4, 3300.	1.9	26
50	Reversible addition–fragmentation chain transfer synthesis of amidineâ€based, CO ₂ â€responsive homo and AB diblock (Co)polymers comprised of histamine and their gasâ€triggered selfâ€assembly in water. Journal of Polymer Science Part A, 2013, 51, 394-404.	2.5	73
51	Postâ€functionalization of a ROMP polymer backbone via radical thiolâ€ene coupling chemistry. Journal of Polymer Science Part A, 2013, 51, 487-492.	2.5	49
52	Thermoresponsive (Co)polymers through Postpolymerization Modification of Poly(2-vinyl-4,4-dimethylazlactone). Macromolecules, 2013, 46, 6475-6484.	2.2	45
53	Endâ€group Functionalization of RAFTâ€prepared Polymers Using Thiolâ€X Chemistries. RSC Polymer Chemistry Series, 2013, , 28-58.	0.1	5
54	RAFT Synthesis and Aqueous Solution Behavior of Novel pH- and Thermo-Responsive (Co)Polymers Derived from Reactive Poly(2-vinyl-4,4-dimethylazlactone) Scaffolds. Macromolecules, 2013, 46, 7290-7302.	2.2	44

#	Article	IF	CITATIONS
55	UCST-driven self-assembly and crosslinking of diblock copolymer micelles. Polymer Chemistry, 2012, 3, 2228.	1.9	32
56	Thiol-Michael coupling chemistry: facile access to a library of functional exo-7-oxanorbornenes and their ring-opening metathesis (co)polymerization. Polymer Chemistry, 2012, 3, 1647.	1.9	29
57	Synthesis and Thermoresponsive Solution Properties of Poly[oligo(ethylene glycol) (meth)acrylamide]s: Biocompatible PEG Analogues. Macromolecules, 2012, 45, 1362-1374.	2.2	119
58	Comparison between the LCST and UCST Transitions of Double Thermoresponsive Diblock Copolymers: Insights into the Behavior of POEGMA in Alcohols. Macromolecules, 2012, 45, 3221-3230.	2.2	103
59	Macromolecular Ligands for Gadolinium MRI Contrast Agents. Macromolecules, 2012, 45, 4196-4204.	2.2	133
60	Polymer–gold nanohybrids with potential use in bimodal MRI/CT: enhancing the relaxometric properties of Gd(iii) complexes. Journal of Materials Chemistry, 2012, 22, 21382.	6.7	34
61	Facile Access to Polymeric Vesicular Nanostructures: Remarkable ï‰-End group Effects in Cholesterol and Pyrene Functional (Co)Polymers. Macromolecules, 2011, 44, 299-312.	2.2	59
62	Macromolecular thiolysis of oxiranes: end-group modification of RAFT prepared homopolymers. Polymer Chemistry, 2011, 2, 1347.	1.9	36
63	RAFT Polymerization and Thiol Chemistry: A Complementary Pairing for Implementing Modern Macromolecular Design. Macromolecular Rapid Communications, 2011, 32, 1123-1143.	2.0	182
64	Combining RAFT Radical Polymerization and Click/Highly Efficient Coupling Chemistries: A Powerful Strategy for the Preparation of Novel Materials. Macromolecular Rapid Communications, 2011, 32, 779-800.	2.0	68
65	End Group Reactions of RAFT-Prepared (Co)Polymers. Australian Journal of Chemistry, 2011, 64, 992.	0.5	63
66	Thiol-Based 'Click' Chemistries in Polymer: Synthesis and Modification. Australian Journal of Chemistry, 2010, 63, 1251.	0.5	70
67	Thiol-ene "click―reactions and recent applications in polymer and materials synthesis. Polymer Chemistry, 2010, 1, 17-36.	1.9	1,331
68	Combining Thioâ^'Bromo "Click―Chemistry and RAFT Polymerization: A Powerful Tool for Preparing Functionalized Multiblock and Hyperbranched Polymers. Macromolecules, 2010, 43, 20-24.	2.2	153
69	Synthesis, Thiolâ~'Yne "Click―Photopolymerization, and Physical Properties of Networks Derived from Novel Multifunctional Alkynes. Macromolecules, 2010, 43, 4937-4942.	2.2	114
70	Thiol-yne click chemistry: A powerful and versatile methodology for materials synthesis. Journal of Materials Chemistry, 2010, 20, 4745.	6.7	448
71	Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chemical Society Reviews, 2010, 39, 1355.	18.7	1,426
72	Nucleophile-Initiated Thiol-Michael Reactions: Effect of Organocatalyst, Thiol, and Ene. Macromolecules, 2010, 43, 6381-6388.	2.2	320

#	Article	IF	CITATIONS
73	Improved Molecular Weight Control in Ringâ€Opening Metathesis Polymerization (ROMP) Reactions with Ruâ€Based Olefin Metathesis Catalysts Using N Donors and Acid: A Kinetic and Mechanistic Investigation. Chemistry - A European Journal, 2009, 15, 12435-12446.	1.7	39
74	Ruâ€Based Olefin Metathesis Catalysts Bearing pHâ€Responsive Nâ€Heterocyclic Carbene (NHC) Ligands: Activity Control via Degree of Protonation. European Journal of Inorganic Chemistry, 2009, 2009, 1717-1722.	1.0	58
75	Synthesis of di- and tri-tertiary amine containing methacrylic monomers and their (co)polymerization via RAFT. Journal of Polymer Science Part A, 2009, 47, 1877-1890.	2.5	14
76	Sequential thiolâ€ene/thiolâ€ene and thiolâ€ene/thiolâ€yne reactions as a route to wellâ€defined mono and bis endâ€functionalized poly(<i>N</i> â€isopropylacrylamide). Journal of Polymer Science Part A, 2009, 47, 3544-3557.	2.5	203
77	The nucleophilic, phosphine-catalyzed thiol–ene click reaction and convergent star synthesis with RAFT-prepared homopolymers. Polymer, 2009, 50, 3158-3168.	1.8	104
78	RAFT Synthesis and Stimulus-Induced Self-Assembly in Water of Copolymers Based on the Biocompatible Monomer 2-(Methacryloyloxy)ethyl Phosphorylcholine. Biomacromolecules, 2009, 10, 950-958.	2.6	76
79	Photopolymerization of Thiol-Alkynes: Polysulfide Networks. Chemistry of Materials, 2009, 21, 1579-1585.	3.2	119
80	The Thiolâ^'Isocyanate Click Reaction: Facile and Quantitative Access to ω-End-Functional Poly(<i><i>N,N</i></i> -diethylacrylamide) Synthesized by RAFT Radical Polymerization. Macromolecules, 2009, 42, 6537-6542.	2.2	161
81	Sequential Phosphine-Catalyzed, Nucleophilic Thiolâ^'Ene/Radical-Mediated Thiolâ^'Yne Reactions and the Facile Orthogonal Synthesis of Polyfunctional Materials. Journal of the American Chemical Society, 2009, 131, 5751-5753.	6.6	257
82	Substituted hippurates and hippurate analogs as substrates and inhibitors of peptidylglycine α-hydroxylating monooxygenase (PHM). Bioorganic and Medicinal Chemistry, 2008, 16, 10061-10074.	1.4	12
83	Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol–ene click reaction. Chemical Communications, 2008, , 4959.	2.2	235
84	New Well-Defined Polymeric Betaines:  First Report Detailing the Synthesis and ROMP of Salt-Responsive Sulfopropylbetaine- and Carboxyethylbetaine- <i>exo</i> -7-oxanorbornene Monomers. Macromolecules, 2008, 41, 614-622.	2.2	42
85	Surface Modification of Gold Nanorods with Polymers Synthesized by Reversible Additionâ^'Fragmentation Chain Transfer Polymerization. Chemistry of Materials, 2007, 19, 6-13.	3.2	107
86	Anti-HIV-1 Activity of Poly(mandelic acid) Derivatives. Biomacromolecules, 2007, 8, 3308-3316.	2.6	20
87	Benzylidene-Functionalized Ruthenium-Based Olefin Metathesis Catalysts for Ring-Opening Metathesis Polymerization in Organic and Aqueous Media. Organometallics, 2007, 26, 6515-6518.	1.1	36
88	RAFT Synthesis and Solution Properties of pHâ€Responsive Styrenicâ€Based AB Diblock Copolymers of 4â€Vinylbenzyltrimethylphosphonium Chloride with <i>N</i> , <i>N</i> â€Dimethylbenzylvinylamine. Macromolecular Chemistry and Physics, 2007, 208, 2339-2347.	1.1	21
89	Effect of the Halide Counterion in the ROMP of <i>exo</i> â€Benzylâ€[2â€(3,5â€dioxoâ€10â€oxaâ€4â€azaâ€tricyclo[5.2.1.0 ^{2,6}]decâ€8â€enâ€4â€ ammonium Bromide/Chloride. Macromolecular Chemistry and Physics, 2007, 208, 2389-2395.	€ yl) @thyl]¢	dimaethyl
90	Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007, 32, 283-351.	11.8	695

#	Article	IF	CITATIONS
91	The controlled homogeneous organic solution polymerization of new hydrophilic cationicexo-7-oxanorbornenes via ROMP with RuCl2(PCy3)2CHPh in a novel 2,2,2-trifluoroethanol/methylenechloride solvent mixture. Journal of Polymer Science Part A, 2007, 45, 2113-2128.	2.5	38
92	RAFT polymerization of styrenic-based phosphonium monomers and a new family of well-defined statistical and block polyampholytes. Journal of Polymer Science Part A, 2007, 45, 2468-2483.	2.5	62
93	Photopolymerization kinetics of ionic liquid monomers derived from the neutralization reaction between trialkylamines and acid-containing (meth)acrylates. Journal of Polymer Science Part A, 2007, 45, 3009-3021.	2.5	40
94	A doubly responsive AB diblock copolymer: RAFT synthesis and aqueous solution properties of poly (<i>N</i> â€isopropylacrylamideâ€ <i>block</i> â€4â€vinylbenzoic acid). Journal of Polymer Science Part A, 2007, 45, 5864-5871.	2.5	61
95	Synthesis of controlled-structure AB diblock copolymers of 3-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose and 2-(dimethylamino)ethyl methacrylate. Polymer, 2007, 48, 2221-2230.	1.8	65
96	Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerizationâ€. Macromolecules, 2006, 39, 1724-1730.	2.2	327
97	Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Journal of Polymer Science Part A, 2006, 44, 5809-5831.	2.5	429
98	Characterization of pH-dependent micellization of polystyrene-based cationic block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. Polymer, 2006, 47, 4333-4340.	1.8	34
99	Synthesis of Polyelectrolytes via Ring Opening Metathesis Polymerization. ACS Symposium Series, 2006, , 117-128.	0.5	3
100	Synthetic Polyzwitterions: Water-Soluble Copolymers and Terpolymers. ACS Symposium Series, 2006, , 47-63.	0.5	7
101	Reversible Addition Fragmentation Chain Transfer Polymerization of Water-Soluble, Ion-Containing Monomers. ACS Symposium Series, 2006, , 95-115.	0.5	11
102	Synthesis, Aqueous Solution Properties, and Biomedical Application of Polymeric Betaines. ACS Symposium Series, 2006, , 65-78.	0.5	4
103	Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria. Journal of Applied Polymer Science, 2006, 101, 1036-1041.	1.3	52
104	Synthesis of Terminally Functionalized (Co)Polymers via Reversible Addition Fragmentation Chain Transfer Polymerization and Subsequent Immobilization to Solid Surfaces with Potential Biosensor Applications. ACS Symposium Series, 2005, , 43-54.	0.5	5
105	Aqueous RAFT Polymerization of Acrylamide andN,N-Dimethylacrylamide at Room Temperature. Macromolecular Rapid Communications, 2005, 26, 791-795.	2.0	104
106	Controlled/living polymerization of methacrylamide in aqueous media via the RAFT process. Journal of Polymer Science Part A, 2005, 43, 3141-3152.	2.5	49
107	Direct, Controlled Synthesis of the Nonimmunogenic, Hydrophilic Polymer, Poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in Aqueous Mediaâ€. Biomacromolecules, 2005, 6, 1846-1850.	2.6	182
108	Synthesis and Evaluation of New Dicarboxylic Acid Functional Trithiocarbonates:Â RAFT Synthesis of Telechelic Poly(n-butyl acrylate)s. Macromolecules, 2005, 38, 9518-9525.	2.2	131

#	Article	IF	CITATIONS
109	Aqueous solution properties of pH-responsive AB diblock acrylamido-styrenic copolymers synthesized via aqueous reversible addition-fragmentation chain transfer. Journal of Polymer Science Part A, 2004, 42, 1724-1734.	2.5	85
110	Aqueous RAFT Polymerization: Recent Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled Structures. ChemInform, 2004, 35, no.	0.1	1
111	Facile, Controlled, Room-Temperature RAFT Polymerization ofN-Isopropylacrylamideâ€. Biomacromolecules, 2004, 5, 1177-1180.	2.6	230
112	Hydrolytic Susceptibility of Dithioester Chain Transfer Agents and Implications in Aqueous RAFT Polymerizations. Macromolecules, 2004, 37, 1735-1741.	2.2	228
113	Kinetics and Molecular Weight Control of the Polymerization of Acrylamide via RAFTâ€. Macromolecules, 2004, 37, 8941-8950.	2.2	151
114	Aqueous RAFT Polymerization:  Recent Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled Structures. Accounts of Chemical Research, 2004, 37, 312-325.	7.6	529
115	RAFT Polymerization in Homogeneous Aqueous Media. ACS Symposium Series, 2003, , 586-602.	0.5	7
116	Water-Soluble Polymers. Part 89. Synthesis and Solution Properties of Zwitterionic Polymers. ChemInform, 2003, 34, no.	0.1	0
117	The direct polymerization of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer, 2003, 44, 6761-6765.	1.8	148
118	Sulfobetaine-containing diblock and triblock copolymers via reversible addition-fragmentation chain transfer polymerization in aqueous media. Journal of Polymer Science Part A, 2003, 41, 1262-1281.	2.5	108
119	Aqueous Solution Properties of pH-Responsive AB Diblock Acrylamido Copolymers Synthesized via Aqueous RAFTâ€. Macromolecules, 2003, 36, 5982-5987.	2.2	137
120	Modification of Gold Surfaces with Water-Soluble (Co)polymers Prepared via Aqueous Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerizationâ€. Langmuir, 2003, 19, 5559-5562.	1.6	195
121	Conditions for Facile, Controlled RAFT Polymerization of Acrylamide in Waterâ€. Macromolecules, 2003, 36, 1436-1439.	2.2	129
122	Synthesis of Block Copolymers of 2- and 4-Vinylpyridine by RAFT Polymerization. Macromolecules, 2003, 36, 4679-4681.	2.2	123
123	Homogeneous Controlled Free Radical Polymerization in Aqueous Media. Australian Journal of Chemistry, 2002, 55, 367.	0.5	84
124	Controlled/"Living―Polymerization of Sulfobetaine Monomers Directly in Aqueous Media via RAFTâ€. Macromolecules, 2002, 35, 8663-8666.	2.2	121
125	Synthesis and Solution Properties of Zwitterionic Polymers. Chemical Reviews, 2002, 102, 4177-4190.	23.0	804
126	RAFT Polymerization ofN,N-Dimethylacrylamide in Waterâ€. Macromolecules, 2002, 35, 4570-4572.	2.2	144

#	Article	IF	CITATIONS
127	Facile Preparation of Transition Metal Nanoparticles Stabilized by Well-Defined (Co)polymers Synthesized via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization. Journal of the American Chemical Society, 2002, 124, 11562-11563.	6.6	359
128	Raft Polymerization ofN,N-Dimethylacrylamide Utilizing Novel Chain Transfer Agents Tailored for High Reinitiation Efficiency and Structural Controlâ€. Macromolecules, 2002, 35, 4123-4132.	2.2	176
129	Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT. Macromolecules, 2001, 34, 2248-2256.	2.2	705
130	Water-Soluble Polymers. 84. Controlled Polymerization in Aqueous Media of Anionic Acrylamido Monomers via RAFT. Macromolecules, 2001, 34, 6561-6564.	2.2	158
131	Well-defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings. Journal of Biomedical Materials Research Part B, 2000, 52, 88-94.	3.0	92
132	Stimuli Responsive Water-Soluble and Amphiphilic (Co)polymers. ACS Symposium Series, 2000, , 1-13.	0.5	23
133	Synthesis of Zwitterionic Shell Cross-Linked Micelles. Journal of the American Chemical Society, 1999, 121, 4288-4289.	6.6	245
134	Synthesis and Properties of Low-Polydispersity Poly(sulfopropylbetaine)s and Their Block Copolymers. Macromolecules, 1999, 32, 2141-2148.	2.2	116
135	ABC triblock polymethacrylates: Group transfer polymerization synthesis of the ABC, ACB, and BAC topological isomers and solution characterization. Journal of Polymer Science Part A, 1998, 36, 617-631.	2.5	89
136	Synthesis and Characterization of Zwitterionic Block Copolymers. Macromolecules, 1998, 31, 5991-5998.	2.2	153
137	Selective betainisation of tertiary amine methacrylate block copolymers. Journal of Materials Chemistry, 1997, 7, 1693-1695.	6.7	72
138	Synthesis and aqueous solution properties of novel zwitterionic block copolymers. Chemical Communications, 1997, , 1035-1036.	2.2	83
139	Micelles of Hydrophilicâ ``Hydrophobic Poly(sulfobetaine)-Based Block Copolymers. Macromolecules, 1997, 30, 2509-2512.	2.2	63
140	Synthesis of polybetaines with narrow molecular mass distribution and controlled architecture. Chemical Communications, 1996, , 1555.	2.2	68
141	Wellâ€defined Tetrazoleâ€functional Copolymers as Macromolecular Ligands for Luminescent Ir(III) and Re(I) Metal Species: Synthesis, Photophysical Properties and Application in Bioimaging. Macromolecular Chemistry and Physics, 0, , 2200021.	1.1	0