Nicholas D Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6163493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(<scp>l</scp> -lysine)- <i>g</i> -Poly(ethylene glycol) Layers on Metal Oxide Surfaces:  Attachment Mechanism and Effects of Polymer Architecture on Resistance to Protein Adsorption. Journal of Physical Chemistry B, 2000, 104, 3298-3309.	2.6	620
2	A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces B: Biointerfaces, 2002, 24, 155-170.	5.0	608
3	Poly(l-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces:Â Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption. Langmuir, 2001, 17, 489-498.	3.5	490
4	Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials, 2007, 28, 2175-2182.	11.4	442
5	Nanoparticle printing with single-particle resolution. Nature Nanotechnology, 2007, 2, 570-576.	31.5	410
6	Poly(l-lysine)-graft-poly(ethylene glycol) Assembled Monolayers on Niobium Oxide Surfaces:  A Quantitative Study of the Influence of Polymer Interfacial Architecture on Resistance to Protein Adsorption by ToF-SIMS and in Situ OWLS. Langmuir, 2003, 19, 9216-9225.	3.5	382
7	Optical grating coupler biosensors. Biomaterials, 2002, 23, 3699-3710.	11.4	375
8	Covalent Attachment of Cell-Adhesive, (Arg-Gly-Asp)-Containing Peptides to Titanium Surfaces. Langmuir, 1998, 14, 5507-5516.	3.5	291
9	Effects of Ionic Strength and Surface Charge on Protein Adsorption at PEGylated Surfaces. Journal of Physical Chemistry B, 2005, 109, 17545-17552.	2.6	289
10	Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. Journal of Materials Science: Materials in Medicine, 1999, 10, 35-46.	3.6	286
11	Probing Resistance to Protein Adsorption of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers by Scanning Force Microscopy. Journal of the American Chemical Society, 1999, 121, 10134-10141.	13.7	262
12	Biotin-Derivatized Poly(l-lysine)-g-poly(ethylene glycol):Â A Novel Polymeric Interface for Bioaffinity Sensing. Langmuir, 2002, 18, 220-230.	3.5	261
13	Influence of epidermal hydration on the friction of human skin against textiles. Journal of the Royal Society Interface, 2008, 5, 1317-1328.	3.4	261
14	Structural Chemistry of Self-Assembled Monolayers of Octadecylphosphoric Acid on Tantalum Oxide Surfaces. Langmuir, 2000, 16, 3257-3271.	3.5	256
15	Alkyl Phosphate Monolayers, Self-Assembled from Aqueous Solution onto Metal Oxide Surfaces. Langmuir, 2001, 17, 4014-4020.	3.5	248
16	Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials, 2014, 35, 9023-9032.	11.4	226
17	Surface-chemical and -morphological gradients. Soft Matter, 2008, 4, 419.	2.7	222
18	Sweet, Hairy, Soft, and Slippery, Science, 2008, 319, 575-576.	12.6	221

#	Article	IF	CITATIONS
19	The relationship between skin function, barrier properties, and bodyâ€dependent factors. Skin Research and Technology, 2018, 24, 165-174.	1.6	212
20	Microscopic Mechanism for Shear Thickening of Non-Brownian Suspensions. Physical Review Letters, 2013, 111, 108301.	7.8	207
21	Self-Assembled Monolayers of Dodecyl and Hydroxy-dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces. Langmuir, 2002, 18, 3537-3548.	3.5	197
22	Influence of Alkyl Chain Length on Phosphate Self-Assembled Monolayers. Langmuir, 2007, 23, 8053-8060.	3.5	195
23	Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. Journal of Materials Science: Materials in Medicine, 1997, 8, 867-872.	3.6	193
24	Partial oxidation of methane to formaldehyde by means of molecular oxygen. Journal of Catalysis, 1988, 109, 187-197.	6.2	177
25	PEG-Stabilized Core–Shell Nanoparticles: Impact of Linear <i>versus</i> Dendritic Polymer Shell Architecture on Colloidal Properties and the Reversibility of Temperature-Induced Aggregation. ACS Nano, 2013, 7, 316-329.	14.6	176
26	Beyond the Lotus Effect: Roughness Influences on Wetting over a Wide Surface-Energy Range. Langmuir, 2008, 24, 5411-5417.	3.5	175
27	Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 2002, 13, 535-548.	3.6	170
28	Density Fluctuations Under Confinement: When Is a Fluid Not a Fluid?. Science, 2001, 292, 905-908.	12.6	165
29	Protein-mediated boundary lubrication in arthroplasty. Biomaterials, 2005, 26, 1165-1173.	11.4	158
30	Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Biomaterials, 2007, 28, 5000-5006.	11.4	158
31	Porcine Gastric Mucin (PGM) at the Water/Poly(Dimethylsiloxane) (PDMS) Interface:Â Influence of pH and Ionic Strength on Its Conformation, Adsorption, and Aqueous Lubrication Properties. Langmuir, 2005, 21, 8344-8353.	3.5	157
32	Selective Molecular Assembly Patterning:Â A New Approach to Micro- and Nanochemical Patterning of Surfaces for Biological Applications. Langmuir, 2002, 18, 3281-3287.	3.5	151
33	A simple, controllable source for dosing molecular halogens in UHV. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 1554-1555.	2.1	150
34	Characterization of anodic spark-converted titanium surfaces for biomedical applications. Journal of Materials Science: Materials in Medicine, 1999, 10, 453-457.	3.6	150
35	A Simple, Reproducible Approach to the Preparation of Surface-Chemical Gradients. Langmuir, 2003, 19, 10459-10462.	3.5	148
36	A Biomimetic Alternative to Poly(ethylene glycol) as an Antifouling Coating: Resistance to Nonspecific Protein Adsorption of Poly(<scp>l</scp> -lysine)- <i>graft</i> -dextran. Langmuir, 2008, 24, 8850-8856.	3.5	147

#	Article	IF	CITATIONS
37	Interaction Forces and Morphology of a Protein-Resistant Poly(ethylene glycol) Layer. Biophysical Journal, 2005, 88, 495-504.	0.5	143
38	Oriented Assembly of Gold Nanorods on the Singleâ€Particle Level. Advanced Functional Materials, 2012, 22, 702-708.	14.9	140
39	The Influence of Molecular Architecture on the Macroscopic Lubrication Properties of the Brush-Like Co-polyelectrolyte Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEC) Adsorbed on Oxide Surfaces. Tribology Letters, 2003, 15, 395-405.	2.6	139
40	V2O5\$z.sbnd;SiO2-catalyzed methane partial oxidation with molecular oxygen. Journal of Catalysis, 1989, 116, 399-406.	6.2	137
41	Title is missing!. Tribology Letters, 2003, 15, 231-239.	2.6	136
42	Lubrication Properties of a Brushlike Copolymer as a Function of the Amount of Solvent Absorbed within the Brush. Macromolecules, 2005, 38, 5706-5713.	4.8	134
43	Tribofilm formation from ZnDTP on diamond-like carbon. Wear, 2008, 264, 316-321.	3.1	131
44	Relationship between Interfacial Forces Measured by Colloid-Probe Atomic Force Microscopy and Protein Resistance of Poly(ethylene glycol)-Grafted Poly(l-lysine) Adlayers on Niobia Surfaces. Langmuir, 2005, 21, 6508-6520.	3.5	125
45	A Novel Approach To Produce Biologically Relevant Chemical Patterns at the Nanometer Scale:Â Selective Molecular Assembly Patterning Combined with Colloidal Lithography. Langmuir, 2002, 18, 8580-8586.	3.5	124
46	Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. Acta Biomaterialia, 2015, 28, 64-75.	8.3	124
47	Sensitivity of Frictional Forces to pH on a Nanometer Scale: A Lateral Force Microscopy Study. Langmuir, 1995, 11, 4632-4635.	3.5	123
48	Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dental Materials, 2016, 32, 1374-1384.	3.5	119
49	Nitrilotriacetic Acid Functionalized Graft Copolymers: A Polymeric Interface for Selective and Reversible Binding of Histidine-Tagged Proteins. Advanced Functional Materials, 2006, 16, 243-251.	14.9	116
50	Roughness-dependent tribology effects on discontinuous shear thickening. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5117-5122.	7.1	116
51	The role of nanostructures and hydrophilicity in osseointegration: <i>Inâ€vitro</i> proteinâ€adsorption and bloodâ€interaction studies. Journal of Biomedical Materials Research - Part A, 2015, 103, 2661-2672.	4.0	112
52	Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. Journal of Materials Science: Materials in Medicine, 1997, 8, 683-690.	3.6	111
53	Chemical Design of Nonâ€lonic Polymer Brushes as Biointerfaces: Poly(2â€oxazine)s Outperform Both Poly(2â€oxazoline)s and PEG. Angewandte Chemie - International Edition, 2018, 57, 11667-11672.	13.8	110
54	Nanotribology of Surface-Grafted PEG Layers in an Aqueous Environment. Langmuir, 2008, 24, 1484-1488.	3.5	109

#	Article	IF	CITATIONS
55	Microslips to "Avalanches―in Confined, Molecular Layers of Ionic Liquids. Journal of Physical Chemistry Letters, 2014, 5, 179-184.	4.6	107
56	Title is missing!. Tribology Letters, 2001, 10, 111-116.	2.6	106
57	Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Analytical and Bioanalytical Chemistry, 2012, 403, 1415-1432.	3.7	102
58	Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces. Langmuir, 1999, 15, 4324-4327.	3.5	101
59	Skin–textile friction and skin elasticity in young and aged persons. Skin Research and Technology, 2009, 15, 288-298.	1.6	98
60	Ionic Liquids Confined in Hydrophilic Nanocontacts: Structure and Lubricity in the Presence of Water. Journal of Physical Chemistry C, 2014, 118, 6491-6503.	3.1	98
61	XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribology Letters, 2007, 25, 185-196.	2.6	97
62	Surface-Grafted, Covalently Cross-Linked Hydrogel Brushes with Tunable Interfacial and Bulk Properties. Macromolecules, 2011, 44, 5344-5351.	4.8	94
63	Microcontact Printing of Macromolecules with Submicrometer Resolution by Means of Polyolefin Stamps. Langmuir, 2003, 19, 6104-6109.	3.5	93
64	Orientation and electronic structure of methylene blue on mica: A near edge xâ€ray absorption fine structure spectroscopy study. Journal of Chemical Physics, 1996, 104, 7749-7757.	3.0	91
65	A single crystal study of the initial stages of silver sulphidation: The chemisorption and reactivity of molecular sulphur (S2) on Ag(111). Surface Science, 1979, 81, 273-284.	1.9	90
66	Toward a Force Spectroscopy of Polymer Surfaces. Langmuir, 1998, 14, 372-378.	3.5	89
67	Aqueous lubrication of polymers: Influence of surface modification. Tribology International, 2005, 38, 922-930.	5.9	89
68	Friction Measurements on Contact Lenses in Their Operating Environment. Tribology Letters, 2011, 44, 387-397.	2.6	89
69	Reduction of Friction at Oxide Interfaces upon Polymer Adsorption from Aqueous Solutions. Langmuir, 2004, 20, 423-428.	3.5	88
70	Combined in situ (ATR FT-IR) and ex situ (XPS) Study of the ZnDTP-Iron Surface Interaction. Tribology Letters, 2003, 15, 181-191.	2.6	87
71	Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia. Nature, 1981, 294, 643-644.	27.8	86
72	Printing Chemical Gradients. Langmuir, 2005, 21, 7796-7804.	3.5	85

#	Article	IF	CITATIONS
73	Preferential Solvation and Its Effect on the Lubrication Properties of a Surface-Bound, Brushlike Copolymer. Macromolecules, 2005, 38, 3861-3866.	4.8	84
74	Fabricating Chemical Gradients on Oxide Surfaces by Means of Fluorinated, Catechol-Based, Self-Assembled Monolayers. Langmuir, 2010, 26, 16211-16220.	3.5	84
75	Controlling Adhesion Force by Means of Nanoscale Surface Roughness. Langmuir, 2011, 27, 9972-9978.	3.5	84
76	Spontaneous Blinking from a Tribological Viewpoint. Ocular Surface, 2015, 13, 236-249.	4.4	84
77	Superconducting and magnetic phase boundaries inBi2Sr2Ca1â^'xMxCu2O8, withM=Y, Gd, and Pr. Physical Review B, 1992, 45, 7436-7443.	3.2	82
78	Tribological Properties of Poly(<scp>l</scp> -lysine)- <i>graft</i> -poly(ethylene glycol) Films: Influence of Polymer Architecture and Adsorbed Conformation. ACS Applied Materials & Interfaces, 2009, 1, 1224-1230.	8.0	82
79	A novel lowâ€friction surface for biomedical applications: Modification of poly(dimethylsiloxane) (PDMS) with polyethylene glycol(PEC)â€DOPAâ€lysine. Journal of Biomedical Materials Research - Part A, 2009, 90A, 742-749.	4.0	81
80	Anisotropic Wetting of Microstructured Surfaces as a Function of Surface Chemistry. ACS Applied Materials & Interfaces, 2012, 4, 123-130.	8.0	81
81	Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption. Review of Scientific Instruments, 1997, 68, 2172-2176.	1.3	79
82	Influence of Molecular Architecture on the Adsorption of Poly(ethylene oxide)â^'Poly(propylene) Tj ETQq0 0 0 rgE Macromolecules, 2004, 37, 8349-8356.	T /Overloo 4.8	ck 10 Tf 50 3 78
83	Compressing PEG Brushes. Macromolecules, 2005, 38, 5254-5259.	4.8	78
84	The Effect of Surface lons on Water Adsorption to Mica. Langmuir, 2008, 24, 1566-1569.	3.5	78
85	Critical currents and magnetization incâ€axis textured Biâ€Pb‣râ€Caâ€Cuâ€O superconductors. Applied Physi Letters, 1991, 58, 868-870.	cs 3.3	77
86	Sliding friction of polyethylene on ice: tribometer measurements. Tribology Letters, 2006, 24, 77-84.	2.6	76
87	Room-Temperature, Aqueous-Phase Fabrication of Poly(methacrylic acid) Brushes by UV-LED-Induced, Controlled Radical Polymerization with High Selectivity for Surface-Bound Species. Macromolecules, 2009, 42, 9124-9132.	4.8	76
88	Molecular-Weight Determination of Polymer Brushes Generated by SI-ATRP on Flat Surfaces. Macromolecules, 2014, 47, 269-275.	4.8	76
89	Sliding friction of polyethylene on snow and ice: Contact area and modeling. Cold Regions Science and Technology, 2007, 47, 276-289.	3.5	75
90	Adsorption and surface chemistry in tribology. Tribology International, 1997, 30, 881-888.	5.9	74

#	Article	IF	CITATIONS
91	Closing the Gap Between Self-Assembly and Microsystems Using Self-Assembly, Transfer, and Integration of Particles. Advanced Materials, 2005, 17, 2438-2442.	21.0	73
92	The adsorption and lubrication behavior of synovial fluid proteins and glycoproteins on the bearing-surface materials of hip replacements. Biomaterials, 2009, 30, 2072-2078.	11.4	73
93	Directed Placement of Gold Nanorods Using a Removable Template for Guided Assembly. Nano Letters, 2011, 11, 3957-3962.	9.1	72
94	Wavelength-dependent measurement and evaluation of surface topographies: application of a new concept of window roughness and surface transfer function. Wear, 2000, 237, 231-252.	3.1	70
95	Title is missing!. Tribology Letters, 2003, 15, 199-209.	2.6	70
96	Surface modification of PLGA microspheres. Journal of Biomedical Materials Research - Part A, 2003, 66A, 55-61.	4.0	70
97	Plasma protein adsorption on titanium: comparative in situ studies using optical waveguide lightmode spectroscopy and ellipsometry. Colloids and Surfaces B: Biointerfaces, 1998, 11, 187-201.	5.0	69
98	The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide. Biomaterials, 2011, 32, 8968-8978.	11.4	69
99	XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels. Surface and Interface Analysis, 2000, 29, 460-467.	1.8	67
100	Surface chemistry in tribology. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2002, 216, 443-461.	1.8	67
101	Block Copolymer Thermoplastic Elastomers for Microcontact Printing. Langmuir, 2003, 19, 10957-10961.	3.5	67
102	Study of skin–fabric interactions of relevance to decubitus: friction and contactâ€pressure measurements. Skin Research and Technology, 2008, 14, 77-88.	1.6	66
103	Tribochemistry of Bulk Zinc Metaphosphate Glasses. Tribology Letters, 2010, 39, 121-134.	2.6	66
104	Nonfouling Response of Hydrophilic Uncharged Polymers. Advanced Functional Materials, 2013, 23, 5706-5718.	14.9	65
105	Irreversibility temperatures inc-axis-oriented powders ofYBa2Cu3O7,Bi2Sr2CaCu2O8, andBi2Sr2Ca2Cu3O10. Physical Review B, 1990, 42, 8756-8759.	3.2	64
106	A Tribological Model for Chocolate in the Mouth: General Implications for Slurry-Lubricated Hard/Soft Sliding Counterfaces. Tribology Letters, 2004, 16, 239-249.	2.6	64
107	Lubrication with Oil-Compatible Polymer Brushes. Tribology Letters, 2012, 45, 477-487.	2.6	64
108	Adsorption Properties of Poly(<scp>l</scp> -lysine)- <i>graft</i> -poly(ethylene glycol) (PLL- <i>g</i> -PEG) at a Hydrophobic Interface: Influence of Tribological Stress, pH, Salt Concentration, and Polymer Molecular Weight. Langmuir, 2008, 24, 9479-9488.	3.5	63

#	Article	IF	CITATIONS
109	The effect of sodium on the MoO3\$z.sbnd;SiO2-catalyzed partial oxidation of methane. Journal of Catalysis, 1990, 126, 546-554.	6.2	62
110	Growth of Tribological Films:Â In Situ Characterization Based on Attenuated Total Reflection Infrared Spectroscopy. Langmuir, 2002, 18, 6606-6613.	3.5	62
111	Irreversible structural change of a dry ionic liquid under nanoconfinement. Physical Chemistry Chemical Physics, 2015, 17, 13613-13624.	2.8	62
112	Partial oxidation of CH4 to HCHO over a MoO3-SiO2 catalyst: A kinetic study. AICHE Journal, 1987, 33, 1808-1812.	3.6	61
113	Resonant inverse photoemission ofBi2Ca1+xSr2â^'xCu2O8+yandYBa2Cu3O7â^'x, unoccupied oxygen states, and plasmons. Physical Review B, 1989, 39, 2928-2931.	3.2	61
114	Effect of alkali metal cations on the structure of Mo(VI)/SiO2 catalysts and its relevance to the selective oxidation of methane and methanol. Journal of Catalysis, 1994, 146, 204-210.	6.2	61
115	Diffusion of Alkanethiols in PDMS and Its Implications on Microcontact Printing (μCP). Langmuir, 2005, 21, 622-632.	3.5	61
116	Fabrication and Interfacial Properties of Polymer Brush Gradients by Surface-Initiated Cu(0)-Mediated Controlled Radical Polymerization. Macromolecules, 2017, 50, 2436-2446.	4.8	61
117	Macrotribological Studies of Poly(L-lysine)-graft-Poly(ethylene glycol) in Aqueous Glycerol Mixtures. Tribology Letters, 2010, 37, 541-552.	2.6	60
118	The implant material, Ti6Al7Nb: surface microstructure, composition and properties. Journal of Materials Science: Materials in Medicine, 1999, 10, 191-198.	3.6	59
119	Oxygen Tolerant and Cytocompatible Iron(0)-Mediated ATRP Enables the Controlled Growth of Polymer Brushes from Mammalian Cell Cultures. Journal of the American Chemical Society, 2020, 142, 3158-3164.	13.7	59
120	Chlorine chemisorption and surface chloride formation on Au(111). Surface Science, 1981, 107, 237-248.	1.9	58
121	Improved instrumentation to carry out surface analysis and to monitor chemical surface reactions in situ on small area catalysts over a wide pressure range (10â^'8–105 Torr). Review of Scientific Instruments, 1982, 53, 1888-1893.	1.3	58
122	Fabrication of Multiscale Surface-Chemical Gradients by Means of Photocatalytic Lithography. Langmuir, 2007, 23, 3489-3494.	3.5	58
123	Chemical Reactivity of Triphenyl Phosphorothionate (TPPT) with Iron: An ATR/FT-IR and XPS Investigation. Journal of Physical Chemistry C, 2011, 115, 1339-1354.	3.1	57
124	Chemically patterned, metal oxide based surfaces produced by photolithographic techniques for studying protein– and cell–surface interactions I: Microfabrication and surface characterization. Biomaterials, 2003, 24, 1133-1145.	11.4	56
125	Polymer-Brush Lubrication in Oil: Sliding Beyond the Stribeck Curve. Tribology Letters, 2013, 49, 263-272.	2.6	56
126	Design and characterization of ultrastable, biopassive and lubricious cyclic poly(2-alkyl-2-oxazoline) brushes. Polymer Chemistry, 2018, 9, 2580-2589.	3.9	56

#	Article	IF	CITATIONS
127	Functionalizable Nanomorphology Gradients via Colloidal Self-Assembly. Langmuir, 2007, 23, 5929-5935.	3.5	55
128	Pressure Dependence of ZnDTP Tribochemical Film Formation: A Combinatorial Approach. Tribology Letters, 2007, 28, 209-222.	2.6	55
129	Precise Placement of Gold Nanorods by Capillary Assembly. Langmuir, 2011, 27, 6305-6310.	3.5	54
130	Self-healing behavior of a polyelectrolyte-based lubricant additive for aqueous lubrication of oxide materials. Tribology Letters, 2006, 24, 217-223.	2.6	53
131	Capabilities of Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Depth Profiling of Thin Metal Coatings. Analytical Chemistry, 2007, 79, 2325-2333.	6.5	53
132	Polymer Brushes under Shear: Molecular Dynamics Simulations Compared to Experiments. Langmuir, 2015, 31, 4798-4805.	3.5	53
133	Surface-Initiated Photoinduced ATRP: Mechanism, Oxygen Tolerance, and Temporal Control during the Synthesis of Polymer Brushes. Macromolecules, 2020, 53, 2801-2810.	4.8	53
134	Feasibility study of an online toxicological sensor based on the optical waveguide technique. Biosensors and Bioelectronics, 2000, 15, 423-429.	10.1	52
135	A comparison of osteoclast resorption pits on bone with titanium andÂzirconia surfaces. Biomaterials, 2010, 31, 7321-7331.	11.4	52
136	Simulation of methane partial oxidation over silica-supported MoO3 and V2O5. AICHE Journal, 1991, 37, 87-97.	3.6	51
137	Surface reactivity of tributyl thiophosphate: effects of temperature and mechanical stress. Tribology Letters, 2006, 23, 197-208.	2.6	51
138	Spatial Tuning of the Metal Work Function by Means of Alkanethiol and Fluorinated Alkanethiol Gradients. Journal of Physical Chemistry C, 2009, 113, 5620-5628.	3.1	51
139	Multiple Transmission-Reflection IR Spectroscopy Shows that Surface Hydroxyls Play Only a Minor Role in Alkylsilane Monolayer Formation on Silica. Journal of Physical Chemistry Letters, 2013, 4, 2745-2751.	4.6	51
140	Crosslinking Polymer Brushes with Ethylene Glycol-Containing Segments: Influence on Physicochemical and Antifouling Properties. Langmuir, 2016, 32, 10317-10327.	3.5	51
141	Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic liquid. Physical Chemistry Chemical Physics, 2016, 18, 22719-22730.	2.8	51
142	Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu ⁰ -Mediated Surface-Initiated ATRP. ACS Applied Materials & Interfaces, 2019, 11, 27470-27477.	8.0	50
143	Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu ⁰ -Mediated SI-ATRP under Environmental Conditions. ACS Macro Letters, 2019, 8, 865-870.	4.8	50
144	Linking Friction and Surface Properties of Hydrogels Molded Against Materials of Different Surface Energies. Langmuir, 2019, 35, 15805-15812.	3.5	49

#	Article	IF	CITATIONS
145	Orthogonal nanometer-micrometer roughness gradients probe morphological influences on cell behavior. Biomaterials, 2012, 33, 8055-8061.	11.4	48
146	Layering of ionic liquids on rough surfaces. Nanoscale, 2016, 8, 4094-4106.	5.6	48
147	Fabrication of material-independent morphology gradients for high-throughput applications. Applied Surface Science, 2006, 253, 2148-2153.	6.1	47
148	Cassie-State Wetting Investigated by Means of a Hole-to-Pillar Density Gradient. Langmuir, 2010, 26, 9465-9473.	3.5	47
149	Reactions of zinc-free anti-wear additives in DLC/DLC and steel/steel contacts. Tribology International, 2008, 41, 1090-1096.	5.9	46
150	Impact of Hydrophilic/Hydrophobic Surface Chemistry on Hydration Forces in the Absence of Confinement. Langmuir, 2012, 28, 6589-6594.	3.5	46
151	<i>In vivo</i> confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment. Biointerphases, 2016, 11, 031015.	1.6	46
152	The influence of surface grafting on the growth rate of polymer chains. Polymer Chemistry, 2016, 7, 302-309.	3.9	46
153	Covalent Attachment of Novel Poly(ethylene glycol)â^'Poly(dl-lactic acid) Copolymeric Micelles to TiO2Surfaces. Langmuir, 2002, 18, 252-258.	3.5	45
154	Submicrometer Structure of Surface-Chemical Gradients Prepared by a Two-Step Immersion Method. Langmuir, 2006, 22, 2706-2711.	3.5	45
155	Aqueous Lubrication of SiC and Si3N4 Ceramics Aided by a Brush-like Copolymer Additive, Poly(I-lysine)-graft-poly(ethylene glycol). Tribology Letters, 2009, 34, 201-210.	2.6	45
156	Reducing Friction in the Eye: A Comparative Study of Lubrication by Surface-Anchored Synthetic and Natural Ocular Mucin Analogues. ACS Applied Materials & Interfaces, 2017, 9, 20150-20160.	8.0	45
157	Controlled Crosslinking Is a Tool To Precisely Modulate the Nanomechanical and Nanotribological Properties of Polymer Brushes. Macromolecules, 2017, 50, 2932-2941.	4.8	45
158	Influence of Salt on the Aqueous Lubrication Properties of End-Grafted, Ethylene Glycol-Based Self-Assembled Monolayers. ACS Applied Materials & Interfaces, 2009, 1, 1105-1112.	8.0	44
159	Response of Osteoclasts to Titanium Surfaces with Increasing Surface Roughness: An In Vitro Study. Biointerphases, 2012, 7, 34.	1.6	44
160	Stratified Polymer Grafts: Synthesis and Characterization of Layered â€~Brush' and â€~Gel' Structures. Advanced Materials Interfaces, 2014, 1, 1300007.	3.7	44
161	The Role of Cu ⁰ in Surface-Initiated Atom Transfer Radical Polymerization: Tuning Catalyst Dissolution for Tailoring Polymer Interfaces. Macromolecules, 2018, 51, 6825-6835.	4.8	44
162	Topological Polymer Chemistry Enters Materials Science: Expanding the Applicability of Cyclic Polymers. ACS Macro Letters, 2020, 9, 1024-1033.	4.8	44

#	Article	IF	CITATIONS
163	Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nature Communications, 2021, 12, 1477.	12.8	44
164	Poly(acrylamide) films at the solvent-induced glass transition: adhesion, tribology, and the influence of crosslinking. Soft Matter, 2012, 8, 9092.	2.7	43
165	High critical current densities in ultrathin YBa2Cu3O7â^î^films sandwiched between (PrxY1â^'x)Ba2Cu3O7â~Î1ayers. Applied Physics Letters, 1993, 62, 1289-1291.	3.3	42
166	Poly(l-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications. Biointerphases, 2006, 1, 156-165.	1.6	42
167	Study of Adhesion and Friction Properties on a Nanoparticle Gradient Surface: Transition from JKR to DMT Contact Mechanics. Langmuir, 2013, 29, 175-182.	3.5	42
168	Structuring Hydrogel Surfaces for Tribology. Advanced Materials Interfaces, 2019, 6, 1901320.	3.7	42
169	Load-Induced Transitions in the Lubricity of Adsorbed Poly(<scp>l</scp> -lysine)- <i>g</i> -dextran as a Function of Polysaccharide Chain Density. ACS Applied Materials & Interfaces, 2011, 3, 3020-3025.	8.0	41
170	Surface analytical studies of surface-additive interactions, by means of in situ and combinatorial approaches. Wear, 2004, 256, 578-584.	3.1	40
171	Self-Assembled Hexasaccharides:Â Surface Characterization of Thiol-Terminated Sugars Adsorbed on a Gold Surface. Langmuir, 1996, 12, 6074-6082.	3.5	39
172	Adsorption and Lubricating Properties of Poly(<scp>l</scp> -lysine)- <i>graft</i> -poly(ethylene glycol) on Human-Hair Surfaces. ACS Applied Materials & Interfaces, 2009, 1, 1938-1945.	8.0	39
173	Effects of surface microtopography on the assembly of the osteoclast resorption apparatus. Journal of the Royal Society Interface, 2012, 9, 1599-1608.	3.4	39
174	Ultrathin, freestanding, stimuli-responsive, porous membranes from polymer hydrogel-brushes. Nanoscale, 2015, 7, 13017-13025.	5.6	39
175	Surface Density Variation within Cyclic Polymer Brushes Reveals Topology Effects on Their Nanotribological and Biopassive Properties. ACS Macro Letters, 2018, 7, 1455-1460.	4.8	39
176	Fabrication, Characterisation and Tribological Investigation of Artificial Skin Surface Lipid Films. Tribology Letters, 2009, 34, 81-93.	2.6	38
177	Adhesion and Friction Properties of Polymer Brushes on Rough Surfaces: A Gradient Approach. Langmuir, 2013, 29, 15251-15259.	3.5	38
178	Effect of Leaving Group on the Structures of Alkylsilane SAMs. Langmuir, 2014, 30, 14824-14831.	3.5	38
179	Versatile Surface Modification of Hydrogels by Surface-Initiated, Cu ⁰ -Mediated Controlled Radical Polymerization. ACS Applied Materials & Interfaces, 2020, 12, 6761-6767.	8.0	38
180	Exploring Lubrication Regimes at the Nanoscale: Nanotribological Characterization of Silica and Polymer Brushes in Viscous Solvents. Langmuir, 2013, 29, 10149-10158.	3.5	37

#	Article	IF	CITATIONS
181	Regulation of Human Mesenchymal Stem Cell Osteogenesis by Specific Surface Density of Fibronectin: a Gradient Study. ACS Applied Materials & Interfaces, 2015, 7, 2367-2375.	8.0	37
182	End-grafted Sugar Chains as Aqueous Lubricant Additives: Synthesis and Macrotribological Tests of Poly(l-lysine)-graft-Dextran (PLL-g-dex) Copolymers. Tribology Letters, 2009, 33, 83-96.	2.6	36
183	Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: a bioinspired approach. Soft Matter, 2013, 9, 10572.	2.7	35
184	Friction Measurements on Contact Lenses in a Physiologically Relevant Environment: Effect of Testing Conditions on Friction. , 2016, 57, 5383.		35
185	Oxygen inhibition of free-radical polymerization is the dominant mechanism behind the "mold effect― on hydrogels. Soft Matter, 2021, 17, 6394-6403.	2.7	34
186	Light-Responsive Polymer Surfaces via Postpolymerization Modification of Grafted Polymer-Brush Structures. Langmuir, 2014, 30, 14971-14981.	3.5	33
187	Understanding the effect of hydrophobic protecting blocks on the stability and biopassivity of polymer brushes in aqueous environments: A Tiramisù for cell-culture applications. Polymer, 2016, 98, 470-480.	3.8	33
188	Effect of patterns and inhomogeneities on the surface of waveguides used for optical waveguide lightmode spectroscopy applications. Applied Physics B: Lasers and Optics, 2001, 72, 441-447.	2.2	32
189	Tribological Classification of Contact Lenses: From Coefficient of Friction to Sliding Work. Tribology Letters, 2016, 63, 1.	2.6	32
190	Ammonia synthesis catalyzed by rhenium. Journal of Catalysis, 1982, 78, 142-146.	6.2	31
191	The Influence of Anchoring-Group Structure on the Lubricating Properties of Brush-Forming Graft Copolymers in an Aqueous Medium. Tribology Letters, 2008, 31, 119-128.	2.6	31
192	Friction, lubrication, and polymer transfer between UHMWPE and CoCrMo hipâ€implant materials: A fluorescence microscopy study. Journal of Biomedical Materials Research - Part A, 2009, 89A, 1011-1018.	4.0	31
193	Influence of Environmental Humidity on the Wear and Friction of a Silica/Silicon Tribopair Lubricated with a Hydrophilic Ionic Liquid. ACS Applied Materials & amp; Interfaces, 2016, 8, 2961-2973.	8.0	31
194	Order and Composition of Methyl-Carboxyl and Methyl-Hydroxyl Surface-Chemical Gradients. Langmuir, 2006, 22, 4184-4189.	3.5	30
195	Reactivity of Triphenyl Phosphorothionate in Lubricant Oil Solution. Tribology Letters, 2009, 35, 31-43.	2.6	30
196	Influence of metallic and oxidized iron/steel on the reactivity of triphenyl phosphorothionate in oil solution. Tribology International, 2011, 44, 670-683.	5.9	30
197	Effect of Chain-Length and Countersurface on the Tribochemistry of Bulk Zinc Polyphosphate Glasses. Tribology Letters, 2012, 48, 393-406.	2.6	30
198	Impact of solvation on equilibrium conformation of polymer brushes in solvent mixtures. Soft Matter, 2013, 9, 4045.	2.7	30

#	Article	IF	CITATIONS
199	Environmental Influence on the Surface Chemistry of Ionic-Liquid-Mediated Lubrication in a Silica/Silicon Tribopair. Journal of Physical Chemistry C, 2014, 118, 29389-29400.	3.1	30
200	Cascaded Assembly of Complex Multiparticle Patterns. Langmuir, 2014, 30, 90-95.	3.5	30
201	A water-responsive, gelatine-based human skin model. Tribology International, 2017, 113, 316-322.	5.9	30
202	Title is missing!. Tribology Letters, 1997, 3, 359-365.	2.6	29
203	Surface forces, surface chemistry and tribology. Tribology International, 1998, 31, 99-105.	5.9	29
204	Composition and Microstructure of Zirconia Films Obtained by MOCVD with a New, Liquid, Mixed Acetylacetonato-Alcoholato Precursor. Chemical Vapor Deposition, 1999, 5, 151-158.	1.3	29
205	Chocolate at a Sliding Interface. Journal of Food Science, 2002, 67, 2712-2717.	3.1	29
206	Structural Evolution of Selfâ€Assembled Alkanephosphate Monolayers on TiO ₂ . ChemPhysChem, 2008, 9, 1979-1981.	2.1	29
207	Tribochemistry of Triphenyl Phosphorothionate (TPPT) by In Situ Attenuated Total Reflection (ATR/FT-IR) Tribometry. Journal of Physical Chemistry C, 2012, 116, 5614-5627.	3.1	29
208	The hierarchical bulk molecular structure of poly(acrylamide) hydrogels: beyond the fishing net. Soft Matter, 2020, 16, 9789-9798.	2.7	29
209	New Single-Source Precursors for the MOCVD of High-κ Dielectric Zirconium Silicates to Replace SiO2 in Semiconducting Devices. Chemical Vapor Deposition, 2002, 8, 171.	1.3	28
210	Poly(<scp>l</scp> â€lysine)â€ <i>graft</i> â€poly(ethylene glycol): a versatile aqueous lubricant additive for tribosystems involving thermoplastics. Lubrication Science, 2008, 20, 21-34.	2.1	28
211	Reversible Light-Switching of Enzymatic Activity on Orthogonally Functionalized Polymer Brushes. ACS Applied Materials & Interfaces, 2017, 9, 9245-9249.	8.0	28
212	Using Polymers to Impart Lubricity and Biopassivity to Surfaces: Are These Properties Linked?. Helvetica Chimica Acta, 2019, 102, e1900071.	1.6	28
213	Tuning Interparticle Hydrogen Bonding in Shear-Jamming Suspensions: Kinetic Effects and Consequences for Tribology and Rheology. Journal of Physical Chemistry Letters, 2019, 10, 1663-1668.	4.6	28
214	Importance of Hydration and Surface Structure for Friction of Acrylamide Hydrogels. Tribology Letters, 2020, 68, 1.	2.6	28
215	Rubbing and Scrubbing. Physics Today, 1998, 51, 22-27.	0.3	27
216	Reactivity of alkylated phosphorothionates with steel: a tribological and surfaceâ€analytical study. Lubrication Science, 2008, 20, 79-102.	2.1	27

#	Article	IF	CITATIONS
217	Solution-Phase Preparation and Characterization of Bi1.6Pb0.3Sb0.1Ca2Sr2Cu3O10. Japanese Journal of Applied Physics, 1989, 28, L1564-L1567.	1.5	26
218	Load and Velocity Dependence of Friction Mediated by Dynamics of Interfacial Contacts. Physical Review Letters, 2019, 123, 116102.	7.8	26
219	Grain size dependence of microwave absorption in Y1Ba2Cu3O7 powders near Tc. Physica C: Superconductivity and Its Applications, 1988, 156, 555-558.	1.2	25
220	Photocatalytic Nanolithography of Self-Assembled Monolayers and Proteins. ACS Nano, 2013, 7, 7610-7618.	14.6	25
221	Two-Fluid Model for the Interpretation of Quartz Crystal Microbalance Response: Tuning Properties of Polymer Brushes with Solvent Mixtures. Journal of Physical Chemistry C, 2013, 117, 4533-4543.	3.1	25
222	Fabrication of Thiol–Ene "Clickable―Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography. ACS Applied Materials & Interfaces, 2015, 7, 11337-11345.	8.0	25
223	Direct, Robust Technique for the Measurement of Friction between Microspheres. Langmuir, 2015, 31, 8809-8817.	3.5	25
224	Imparting Nonfouling Properties to Chemically Distinct Surfaces with a Single Adsorbing Polymer: A Multimodal Binding Approach. Macromolecular Rapid Communications, 2016, 37, 622-629.	3.9	25
225	Inkâ€Free Reversible Optical Writing in Monolayers by Polymerization of a Trifunctional Monomer: Toward Rewritable "Molecular Paper― Advanced Materials, 2017, 29, 1701220.	21.0	25
226	Creating an Interface: Rendering a Double-Network Hydrogel Lubricious via Spontaneous Delamination. ACS Applied Materials & Interfaces, 2019, 11, 25427-25435.	8.0	25
227	Influence of Chain Stiffness, Grafting Density and Normal Load on the Tribological and Structural Behavior of Polymer Brushes: A Nonequilibrium-Molecular-Dynamics Study. Polymers, 2016, 8, 254.	4.5	24
228	Lubrication of Si-Based Tribopairs with a Hydrophobic Ionic Liquid: The Multiscale Influence of Water. Journal of Physical Chemistry C, 2018, 122, 7331-7343.	3.1	23
229	Brushes, Graft Copolymers, or Bottlebrushes? The Effect of Polymer Architecture on the Nanotribological Properties of Grafted-from Assemblies. Langmuir, 2019, 35, 11255-11264.	3.5	23
230	Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS Nano, 2020, 14, 10054-10067.	14.6	23
231	Stepwise collapse of highly overlapping electrical double layers. Physical Chemistry Chemical Physics, 2016, 18, 24417-24427.	2.8	22
232	Effect of Crosslinking on the Microtribological Behavior of Model Polymer Brushes. Tribology Letters, 2016, 63, 1.	2.6	22
233	A two-step method for rate-dependent nano-indentation of hydrogels. Polymer, 2018, 137, 276-282.	3.8	22
234	Understanding Complex Tribofilms by Means of H ₃ BO ₃ –B ₂ O ₃ Model Glasses. Langmuir, 2018, 34, 2219-2234.	3.5	22

#	Article	IF	CITATIONS
235	In Situ Attenuated Total Reflection (ATR/FT-IR) Tribometry: A Powerful Tool for Investigating Tribochemistry at the Lubricant–Substrate Interface. Tribology Letters, 2012, 45, 207-218.	2.6	21
236	Ultrathin, Oil-Compatible, Lubricious Polymer Coatings: A Comparison of Grafting-To and Grafting-From Strategies. Tribology Letters, 2013, 49, 273-280.	2.6	21
237	Modulation of Surface-Initiated ATRP by Confinement: Mechanism and Applications. Macromolecules, 2017, 50, 5711-5718.	4.8	21
238	Mechanism and application of surface-initiated ATRP in the presence of a Zn ⁰ plate. Polymer Chemistry, 2020, 11, 7009-7014.	3.9	21
239	Dispersity within Brushes Plays a Major Role in Determining Their Interfacial Properties: The Case of Oligoxazoline-Based Graft Polymers. Journal of the American Chemical Society, 2021, 143, 19067-19077.	13.7	21
240	Glycosylidene Carbenes. Part 27. Glucosidation of titanium dioxide with 1-aziglucoses: Preparation and characterization of modified titanium-dioxide surfaces. Helvetica Chimica Acta, 1998, 81, 1359-1372.	1.6	20
241	Sugars Communicate through Water: Oriented Glycans Induce Water Structuring. Biophysical Journal, 2013, 104, 2686-2694.	0.5	20
242	Scanning Probe Microscopy in Materials Science. MRS Bulletin, 2004, 29, 443-448.	3.5	19
243	Gradients of topographical structure in thin polymer films. Applied Surface Science, 2008, 254, 6820-6825.	6.1	19
244	Protein and Nanoparticle Adsorption on Orthogonal, Charge-Density-Versus-Net-Charge Surface-Chemical Gradients. Langmuir, 2012, 28, 3159-3166.	3.5	19
245	From pH- to Light-Response: Postpolymerization Modification of Polymer Brushes Grafted onto Microporous Polymeric Membranes. ACS Omega, 2017, 2, 455-461.	3.5	19
246	Combined Experimental and Simulation Studies of Cross-Linked Polymer Brushes under Shear. Macromolecules, 2018, 51, 10174-10183.	4.8	19
247	Reduced frictional resistance of polyurethane catheter by means of a surface coating procedure. Journal of Applied Polymer Science, 1996, 61, 1939-1948.	2.6	18
248	Probing the outermost layer of thin gold films by XPS and density functional theory. Applied Surface Science, 2020, 507, 145084.	6.1	18
249	Synthesis of Polymers Containing Potassium Acyltrifluoroborates (KATs) and Postâ€polymerization Ligation and Conjugation. Angewandte Chemie - International Edition, 2020, 59, 14656-14663.	13.8	18
250	Self-Assembled Layers of Substituted Poly(p-phenylene)s on Gold and Copper Investigated by Soft X-ray Spectroscopy. Langmuir, 1996, 12, 719-725.	3.5	17
251	Nanochemical surface analyzer in CMOS technology. Ultramicroscopy, 2002, 91, 21-27.	1.9	17
252	Functionalization of fluoropolymer surfaces with nanopatterned polyelectrolyte brushes. Polymer, 2010, 51, 4037-4043.	3.8	17

#	Article	IF	CITATIONS
253	Orthogonal, Three-Component, Alkanethiol-Based Surface-Chemical Gradients on Gold. Langmuir, 2010, 26, 8392-8399.	3.5	17
254	Fabrication and Microscopic and Spectroscopic Characterization of Planar, Bimetallic, Micro- and Nanopatterned Surfaces. Langmuir, 2017, 33, 5657-5665.	3.5	17
255	Modeling soft, permeable matter with the proper generalized decomposition (PGD) approach, and verification by means of nanoindentation. Soft Matter, 2017, 13, 4482-4493.	2.7	17
256	Rhenium: an ammonia synthesis catalyst. The Journal of Physical Chemistry, 1982, 86, 3493-3494.	2.9	16
257	Microstructured bioreactive surfaces: covalent immobilization of proteins on Au(1 1 1)/silicon via aminoreactive alkanethiolate self-assembled monolayers. Journal of Materials Science: Materials in Medicine, 1999, 10, 255-263.	3.6	16
258	Macroscopic Tribological Testing of Alkanethiol Self-assembled Monolayers (SAMs): Pin-on-disk Tribometry with Elastomeric Sliding Contacts. Tribology Letters, 2007, 28, 229-239.	2.6	16
259	Selective Assembly of Subâ€Micrometer Polymer Particles. Advanced Materials, 2010, 22, 2804-2808.	21.0	16
260	Versatile Wettability Gradients Prepared by Chemical Modification of Polymer Brushes on Polymer Foils. Langmuir, 2011, 27, 6855-6861.	3.5	16
261	Impact of chain morphology on the lubricity of surface-grafted polysaccharides. RSC Advances, 2014, 4, 21497-21503.	3.6	16
262	Aqueous Lubrication with Poly(Ethylene Glycol) Brushes. Tribology Online, 2014, 9, 143-153.	0.9	16
263	Identification of atomic and molecular oxygen surface species on rubidium-dosed Ag(111). Chemical Physics Letters, 1981, 83, 388-390.	2.6	15
264	A Combinatorial Approach to Elucidating Tribochemical Mechanisms. Tribology Letters, 2003, 15, 193-198.	2.6	15
265	Effects of athletic conditioning on horses with degenerative suspensory ligament desmitis: A preliminary report. Veterinary Journal, 2011, 189, 49-57.	1.7	15
266	Functionalization of Fluropolymers and Polyolefins via Grafting of Polyelectrolyte Brushes From Atmosphericâ€Pressure Plasma Activated Surfaces. Plasma Processes and Polymers, 2011, 8, 512-522.	3.0	14
267	Friction of Rubber with Surfaces Patterned with Rigid Spherical Asperities. Tribology Letters, 2013, 49, 135-144.	2.6	14
268	Tailoring SU-8 Surfaces: Covalent Attachment of Polymers by Means of Nitrene Insertion. Langmuir, 2014, 30, 10107-10111.	3.5	14
269	Physical Networks of Metal-Ion-Containing Polymer Brushes Show Fully Tunable Swelling, Nanomechanical and Nanotribological Properties. Macromolecules, 2017, 50, 2495-2503.	4.8	14
270	Specific heat and magnetic susceptibility of the high-Tc superconductor (Bi, Pb, Sb)2Sr2Ca2Cu3O10. Physica C: Superconductivity and Its Applications, 1990, 165, 340-346.	1.2	13

#	Article	IF	CITATIONS
271	Characterization of nanoscale metal structures obtained by template synthesis. Fresenius' Journal of Analytical Chemistry, 1998, 361, 684-686.	1.5	13
272	Sources and control of instrumental drift in the surface forces apparatus. Review of Scientific Instruments, 2000, 71, 4502.	1.3	13
273	Imaging of Surface Heterogeneity by the Microdroplet Condensation Technique. Langmuir, 2001, 17, 4123-4125.	3.5	13
274	Achieving Ultralow Friction by Aqueous, Brush-Assisted Lubrication. , 2007, , 365-396.		13
275	Effect of contact geometry on the friction of acrylamide hydrogels with different surface structures. Friction, 2022, 10, 360-373.	6.4	13
276	Multifilament BPSCCO superconductor: fabrication and heat treatment study. IEEE Transactions on Applied Superconductivity, 1993, 3, 942-945.	1.7	12
277	Tuning Surface Mechanical Properties by Amplified Polyelectrolyte Self-Assembly: Where "Grafting-from―Meets "Grafting-to― ACS Applied Materials & Interfaces, 2013, 5, 4913-4920.	8.0	12
278	Adsorption and Tribochemical Factors Affecting the Lubrication of Silicon-Based Materials by (Fluorinated) Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 7259-7275.	3.1	12
279	Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron. Applied Surface Science, 2017, 396, 1251-1263.	6.1	12
280	Magnetic propulsion of colloidal microrollers controlled by electrically modulated friction. Soft Matter, 2021, 17, 1037-1047.	2.7	12
281	Controlling the Friction of Gels by Regulating Interfacial Oxygen During Polymerization. Tribology Letters, 2021, 69, 86.	2.6	12
282	Towards a Polymer-Brush-Based Friction Modifier for Oil. Tribology Letters, 2021, 69, 1.	2.6	12
283	Silicon interfaces with high temperature superconductors. Surface Science, 1990, 236, 377-384.	1.9	11
284	Characterization of titania surface area in titania/silica SCR catalysts by temperature-programmed reaction of 2-propanol. Applied Catalysis A: General, 1996, 139, 175-187.	4.3	11
285	Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM. Journal of the American Society for Mass Spectrometry, 2015, 26, 1311-1319.	2.8	11
286	ATR-IR Investigation of Solvent Interactions with Surface-Bound Polymers. Langmuir, 2016, 32, 7588-7595.	3.5	11
287	Imparting ultralow lubricity to double-network hydrogels by surface-initiated controlled radical polymerization under ambient conditions. Biotribology, 2021, 26, 100161.	1.9	11
288	Molecular beam reactive scattering of Br2 from Pd(111) using an electrochemical effusive source. Surface Science, 1982, 120, 413-426.	1.9	10

#	Article	IF	CITATIONS
289	Preparation and Characterization of Ultrathin Layers of Substituted Oligo- and Poly(p-phenylene)s and Mixed Layers with Octadecanethiol on Gold and Copper. Langmuir, 1999, 15, 6333-6342.	3.5	10
290	Photochemically Prepared, Two-Component Polymer-Concentration Gradients. Langmuir, 2013, 29, 13031-13041.	3.5	10
291	General In Vitro Method to Analyze the Interactions of Synthetic Polymers with Human Antibody Repertoires. Biomacromolecules, 2014, 15, 113-121.	5.4	10
292	Impact of Dispersity and Hydrogen Bonding on the Lubricity of Poly(acrylamide) Brushes. Advanced Materials Interfaces, 2019, 6, 1900321.	3.7	10
293	Introduction to lateral resolution and analysis area measurements in XPS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	10
294	Single-Molecule AFM Study of DNA Damage by ¹ O ₂ Generated from Photoexcited C ₆₀ . Journal of Physical Chemistry Letters, 2020, 11, 7819-7826.	4.6	10
295	Cyanide chemistry of rubidium-dosed silver and the use of cyanogen as a titrant for surface alkali. Surface Science, 1981, 104, 63-73.	1.9	9
296	Fabrication of thinâ€film superconductors by bulk processing. Applied Physics Letters, 1991, 58, 1917-1919.	3.3	9
297	Coupling plowing of cartilage explants with gene expression in models for synovial joints. Journal of Biomechanics, 2011, 44, 2472-2476.	2.1	9
298	Capillary assembly of cross-gradient particle arrays using a microfluidic chip. Microelectronic Engineering, 2015, 141, 12-16.	2.4	9
299	Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction. Nanoscale, 2015, 7, 6599-6606.	5.6	9
300	Collective dehydration of ions in nano-pores. Physical Chemistry Chemical Physics, 2017, 19, 13462-13468.	2.8	9
301	<i>In situ</i> monitoring of SI-ATRP throughout multiple reinitiations under flow by means of a quartz crystal microbalance. RSC Advances, 2018, 8, 20048-20055.	3.6	9
302	Influence of Water on Tribolayer Growth When Lubricating Steel with a Fluorinated Phosphonium Dicyanamide Ionic Liquid. Lubricants, 2019, 7, 27.	2.9	9
303	Microswimmers from Toposelective Nanoparticle Attachment. Advanced Functional Materials, 2022, 32, 2109175.	14.9	9
304	Gallium enrichment and film detachment during anodizing of an Al–Ga alloy. Corrosion Science, 2000, 42, 405-419.	6.6	8
305	Substituent Effect on the Reactivity of Alkylated Triphenyl Phosphorothionates in Oil Solution in the Presence of Iron Particles. Tribology Letters, 2010, 40, 375-394.	2.6	8
306	Adsorption and Friction Behavior of Amphiphilic Polymers on Hydrophobic Surfaces. Langmuir, 2013, 29, 4760-4771.	3.5	8

#	Article	IF	CITATIONS
307	Indenting polymer brushes of varying grafting density in a viscous fluid: A gradient approach to understanding fluid confinement. Polymer, 2019, 169, 115-123.	3.8	8
308	Topology and Molecular Architecture of Polyelectrolytes Determine Their pH-Responsiveness When Assembled on Surfaces. ACS Macro Letters, 2021, 10, 90-97.	4.8	8
309	High temperature superconducting powders. Physica C: Superconductivity and Its Applications, 1990, 169, 257-264.	1.2	7
310	Alkali-metal-free carbonate coprecipitation: an effective synthetic route to bismuth-based oxide superconductors. Chemistry of Materials, 1990, 2, 708-712.	6.7	7
311	Low detectability of excess yttrium or barium by X-ray diffraction in YBa2Cu3O7 prepared by coprecipitation. Materials Letters, 1990, 9, 537-541.	2.6	7
312	Latex on Glass: an Appropriate Model for Cartilage-Lubrication Studies?. Tribology Letters, 2010, 38, 267-273.	2.6	7
313	Elucidating the resistance to failure under tribological tests of various boron-based films by XPS and ToF-SIMS. Applied Surface Science, 2017, 425, 948-964.	6.1	7
314	Tuning and in situ monitoring of surface-initiated, atom-transfer radical polymerization of acrylamide derivatives in water-based solvents. Polymer Chemistry, 2019, 10, 3933-3942.	3.9	7
315	Processing tetramethylammonium-carbonate-coprecipitated slurries to obtain small-particle-size YBa ₂ Cu ₃ O ₇ . Journal of Materials Research, 1991, 6, 220-226.	2.6	6
316	Bacterially induced degradation of aqueous solutions of poly(<scp>l</scp> â€lysine)â€ <i>graft</i> â€poly(ethylene glycol) and poly(<scp>l</scp> â€lysine)â€ <i>graft</i> â€dextran: consequences for their lubrication properties. Lubrication Science, 2009, 21, 415-425.	2.1	6
317	Chemical Design of Nonâ€lonic Polymer Brushes as Biointerfaces: Poly(2â€oxazine)s Outperform Both Poly(2â€oxazoline)s and PEG. Angewandte Chemie, 2018, 130, 11841-11846.	2.0	6
318	Zinc Diisopropyl Dithiophosphate by XPS. Surface Science Spectra, 2001, 8, 97-104.	1.3	5
319	Biotribological approaches to the lubrication of engineering systems. Tribology Series, 2003, , 411-416.	0.1	5
320	ToFâ€&IMS of polyphosphate glasses. Surface and Interface Analysis, 2013, 45, 579-582.	1.8	5
321	Aqueous Lubrication with Polymer Brushes. , 2014, , 183-218.		5
322	Delineating Fibronectin Bioadhesive Micropatterns by Photochemical Immobilization of Polystyrene and Poly(vinylpyrrolidone). ACS Applied Materials & amp; Interfaces, 2014, 6, 18683-18692.	8.0	5
323	Orthogonal Morphological Feature Size and Density Gradients for Exploring Synergistic Effects in Biology. Langmuir, 2015, 31, 8446-8452.	3.5	5
324	Mechanical and tribological properties of boron oxide and zinc borate glasses. Journal of Commonwealth Law and Legal Education, 2016, 57, 233-244.	0.5	5

#	Article	IF	CITATIONS
325	Engineering Lubricious, Biopassive Polymer Brushes by Surface-Initiated, Controlled Radical Polymerization. Industrial & Engineering Chemistry Research, 2018, 57, 4600-4606.	3.7	5
326	Synthesis of Polymers Containing Potassium Acyltrifluoroborates (KATs) and Postâ€polymerization Ligation and Conjugation. Angewandte Chemie, 2020, 132, 14764-14771.	2.0	5
327	Synthesis of acrylamide-based block-copolymer brushes under flow: monitoring real-time growth and surface restructuring upon drying. Polymer Chemistry, 2020, 11, 3209-3216.	3.9	5
328	KAT Ligation for Rapid and Facile Covalent Attachment of Biomolecules to Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 29113-29121.	8.0	5
329	Synthesis and Properties of Superconducting Mixed Rare Earth LnBa2Cu3O7-xCompounds. Japanese Journal of Applied Physics, 1989, 28, L757-L758.	1.5	4
330	Matrix effects on the surface plasmon resonance of dry supported gold nanocrystals. Optics Letters, 2008, 33, 806.	3.3	4
331	Role of Boron in the Tribochemistry of Thermal Films Formed in the Presence of ZnDTP and Dispersant Additives. Tribology Letters, 2017, 65, 1.	2.6	4
332	Applying an Oleophobic/Hydrophobic Fluorinated Polymer Monolayer Coating from Aqueous Solutions. Langmuir, 2021, 37, 4387-4394.	3.5	4
333	Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysisâ€"Determination of lateral resolution and sharpness in beamâ€based methods with a range from nanometres to micrometres and its implementation for imaging laboratory Xâ€ray photoelectron spectrometers (XPS). Surface and Interface Analysis. 0	1.8	4
334	In situ attenuated total reflection (ATR) spectroscopic analysis of tribological phenomena. Tribology Series, 2002, 40, 199-206.	0.1	3
335	Additive-surface interaction in boundary lubrication: A combinatorial approach. Tribology Series, 2002, 40, 49-57.	0.1	3
336	Boundary lubrication and friction of polyethylene and polyamides under protein-containing solutions. Tribology Series, 2002, 40, 361-366.	0.1	3
337	Influence of Solutes on Hydration and Lubricity of Dextran Brushes. Chimia, 2012, 66, 192-195.	0.6	3
338	Ion Depletion Near a Solution Surface: Is Image-Charge Repulsion Sufficient?. Physical Review Letters, 2013, 111, 266102.	7.8	2
339	Template-Stripped, Ultraflat Gold Surfaces with Coplanar, Embedded Titanium Micropatterns. Langmuir, 2013, 29, 9935-9943.	3.5	2
340	Aqueous Lubrication: Impact of Dispersity and Hydrogen Bonding on the Lubricity of Poly(acrylamide) Brushes (Adv. Mater. Interfaces 14/2019). Advanced Materials Interfaces, 2019, 6, 1970094.	3.7	2
341	Publishing Science in Tribology: The Past, Present and Future of Tribology Letters. Tribology Letters, 2021, 69, 1.	2.6	2
342	Physical Properties and Phase Identification in Yttrium—Alkaline Earth—Bismuth—Copper Oxide Systems. ACS Symposium Series, 1988, , 145-154.	0.5	1

#	Article	IF	CITATIONS
343	A controllable vibratory calciner for processing highâ€ŧemperature superconductors and other ceramic powders. Review of Scientific Instruments, 1990, 61, 1525-1527.	1.3	1
344	Surface Nanochemical Studies of Polymers and Other Organic Surfaces by Scanning Force Microscopy. ACS Symposium Series, 1999, , 272-283.	0.5	1
345	Boundary lubrication: from simple fatty acids to synovial fluid. Tribology Series, 2002, , 61-66.	0.1	1
346	Density fluctuations in confined cyclohexane both in the absence and the presence of shear. Tribology Series, 2002, 40, 75-81.	0.1	1
347	Patterning Gradients. Methods in Cell Biology, 2014, 119, 91-121.	1.1	1
348	Polymeric Thin Films: Stratified Polymer Grafts: Synthesis and Characterization of Layered â€~Brush' and â€~Gel' Structures (Adv. Mater. Interfaces 1/2014). Advanced Materials Interfaces, 2014, 1, n/a-n/a.	3.7	1
349	XPS, AES and ToF IMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels. Surface and Interface Analysis, 2000, 29, 460-467.	1.8	1
350	Influence of Surface Modification on Aqueous Lubrication of Elastomers. , 2005, , 457.		0
351	Nanoparticle Arrays: Selective Assembly of Sub-Micrometer Polymer Particles (Adv. Mater. 25/2010). Advanced Materials, 2010, 22, n/a-n/a.	21.0	0
352	Self-Assembly: Oriented Assembly of Gold Nanorods on the Single-Particle Level (Adv. Funct. Mater.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf S

353	Reactive-Oxygen-Species-Mediated Surface Oxidation of Single-Molecule DNA Origami by an Atomic Force Microscope Tip-Mounted C60 Photocatalyst. ACS Nano, 2021, , .	14.6	0
354	(Invited) DNA Kirigami with Tripod-C ₆₀ Scalpel. ECS Meeting Abstracts, 2022, MA2022-01, 814-814.	0.0	0