
Meng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616306/publications.pdf Version: 2024-02-01

MENC YANG

#	Article	IF	CITATIONS
1	Highâ€Energy Interlayerâ€Expanded Copper Sulfide Cathode Material in Nonâ€Corrosive Electrolyte for Rechargeable Magnesium Batteries. Advanced Materials, 2020, 32, e1905524.	21.0	125
2	Developing Polymer Cathode Material for the Chloride Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 2535-2540.	8.0	90
3	Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries. Scientific Reports, 2016, 6, 19564.	3.3	79
4	Free-standing and flexible LiMnTiO4/carbon nanotube cathodes for high performance lithium ion batteries. Journal of Power Sources, 2016, 321, 120-125.	7.8	48
5	Carbon incorporation effects and reaction mechanism of FeOCl cathode materials for chloride ion batteries. Scientific Reports, 2016, 6, 19448.	3.3	43
6	Polypyrrole as a Novel Chloride‣torage Electrode for Seawater Desalination. Energy Technology, 2019, 7, 1900835.	3.8	40
7	Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 6200.	6.7	39
8	Room-Temperature Stable Inorganic Halide Perovskite as Potential Solid Electrolyte for Chloride Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 18634-18641.	8.0	35
9	Typha-derived hard carbon for high-performance sodium ion storage. Journal of Alloys and Compounds, 2019, 784, 1290-1296.	5.5	28
10	Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries. Nanomaterials, 2015, 5, 1985-1994.	4.1	27
11	Graphene-encapsulated Li2MnTi3O8 nanoparticles as a high rate anode material for lithium-ion batteries. Electrochimica Acta, 2015, 155, 272-278.	5.2	25
12	The high capacity and excellent rate capability of Ti-doped Li ₂ MnSiO ₄ as a cathode material for Li-ion batteries. RSC Advances, 2015, 5, 1612-1618.	3.6	23
13	Synthesis and characterization of LiMnPO4/C nano-composites from manganese(ii) phosphate trihydrate precipitated from a micro-channel reactor approach. RSC Advances, 2014, 4, 25625.	3.6	22
14	Nanostructured cation disordered Li ₂ FeTiO ₄ /graphene composite as high capacity cathode for lithium-ion batteries. Materials Technology, 2016, 31, 537-543.	3.0	22
15	Cation-Disordered Lithium-Excess Li–Fe–Ti Oxide Cathode Materials for Enhanced Li-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 44144-44152.	8.0	22
16	A Highâ€Energy Aqueous Manganese–Metal Hydride Hybrid Battery. Advanced Materials, 2020, 32, e2001106.	21.0	22
17	Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage. Nanomaterials, 2015, 5, 2335-2347.	4.1	19
18	Synthesis and improved electrochemical properties of Na-substituted Li 2 MnSiO 4 nanoparticles as cathode materials for Li-ion batteries. Chemical Physics Letters, 2015, 619, 39-43.	2.6	16

Meng Yang

#	Article	IF	CITATIONS
19	Electrochemical properties of Co(OH)2 powders as an anode in an alkaline battery. Journal of Materials Science, 2010, 45, 3752-3756.	3.7	13
20	Phoenix tree leaves-derived biomass carbons for sodium-ion batteries. Functional Materials Letters, 2018, 11, 1840008.	1.2	11
21	The spinel phase LiMnTiO4 as a potential cathode for rechargeable lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2015, 26, 6366-6372.	2.2	10
22	Facile Repair of Antiâ€Corrosion Polymeric Composite Coatings Based on Light Triggered Selfâ€Healing. Macromolecular Materials and Engineering, 2021, 306, 2100106.	3.6	10
23	Vanadium oxychloride as cathode for rechargeable aluminum batteries. Journal of Alloys and Compounds, 2019, 806, 1109-1115.	5.5	9
24	Spinel LiMn2â^'x Si x O4 (x < 1) through Si4+ substitution as a potential cathode material for lithium-ion batteries. Science China Materials, 2016, 59, 558-566.	6.3	8
25	Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials. Materials Research Express, 2018, 5, 045401.	1.6	7
26	Triconstituent co-assembly to hierarchically porous carbons as high-performance anodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 771, 140-146.	5.5	7
27	Mn2SiO4/CNT composites as anode materials for high performance lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 7867-7875.	2.2	5
28	Layered-Template Synthesis of Graphene-like Fe-N-C Nanosheets for Highly Efficient Oxygen Reduction Reaction. Energy & Fuels, 2021, 35, 20349-20357.	5.1	5
29	Improved electrochemical properties of flower-like Co hierarchitectures as anode materials for alkaline secondary batteries. Functional Materials Letters, 2017, 10, 1750076.	1.2	4
30	Carbon Nanotube Supported Li-Excess Cation-Disordered Li1.24Fe0.38Ti0.38O2 Cathode with Enhanced Lithium-Ion Storage Performance. Journal of Electronic Materials, 2021, 50, 5029-5036.	2.2	4
31	Porous TiO2â^'x with oxygen deficiency as sulfur host for lithium–sulfur batteries. Functional Materials Letters, 0, , 2143004.	1.2	1
32	Phoenix Tree Leaves–Derived Biomass Carbons for Sodium-Ion Batteries. , 2021, , 135-146.		0