Stephen J Haggarty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6162737/publications.pdf

Version: 2024-02-01

147 papers

26,108 citations

18465 62 h-index 9090 144 g-index

160 all docs

160 docs citations

times ranked

160

36326 citing authors

#	Article	IF	CITATIONS
1	The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science, 2006, 313, 1929-1935.	6.0	4,472
2	A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell, 2017, 171, 1437-1452.e17.	13.5	2,281
3	Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen. Science, 1999, 286, 971-974.	6.0	1,638
4	HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459, 55-60.	13.7	1,414
5	A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 2014, 506, 185-190.	13.7	1,305
6	Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4389-4394.	3.3	980
7	An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 2012, 483, 222-226.	13.7	733
8	Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK3 l^2/l^2 -Catenin Signaling. Cell, 2009, 136, 1017-1031.	13.5	703
9	Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation. Science, 2010, 327, 348-351.	6.0	681
10	Chemical phylogenetics of histone deacetylases. Nature Chemical Biology, 2010, 6, 238-243.	3.9	646
11	Inhibitors of Class 1 Histone Deacetylases Reverse Contextual Memory Deficits in a Mouse Model of Alzheimer's Disease. Neuropsychopharmacology, 2010, 35, 870-880.	2.8	627
12	Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity. Science, 2010, 327, 213-216.	6.0	581
13	Histone Deacetylase 5 Epigenetically Controls Behavioral Adaptations to Chronic Emotional Stimuli. Neuron, 2007, 56, 517-529.	3.8	560
14	Antidepressant Actions of Histone Deacetylase Inhibitors. Journal of Neuroscience, 2009, 29, 11451-11460.	1.7	535
15	Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nature Chemical Biology, 2010, 6, 231-237.	3.9	482
16	Epigenetic Priming of Memory Updating during Reconsolidation to Attenuate Remote Fear Memories. Cell, 2014, 156, 261-276.	13.5	318
17	<i>CHD8</i> regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4468-77.	3.3	297
18	Epigenetic Characterization of the FMR1 Gene and Aberrant Neurodevelopment in Human Induced Pluripotent Stem Cell Models of Fragile X Syndrome. PLoS ONE, 2011, 6, e26203.	1.1	274

#	Article	IF	CITATIONS
19	Deregulation of HDAC1 by p25/Cdk5 in Neurotoxicity. Neuron, 2008, 60, 803-817.	3.8	262
20	Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chemistry and Biology, 2000, 7, 275-286.	6.2	235
21	Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16594-16599.	3.3	225
22	An Aldol-Based Build/Couple/Pair Strategy for the Synthesis of Medium- and Large-Sized Rings: Discovery of Macrocyclic Histone Deacetylase Inhibitors. Journal of the American Chemical Society, 2010, 132, 16962-16976.	6.6	195
23	High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chemistry and Biology, 1999, 6, 71-83.	6.2	191
24	Multidimensional Chemical Genetic Analysis of Diversity-Oriented Synthesis-Derived Deacetylase Inhibitors Using Cell-Based Assays. Chemistry and Biology, 2003, 10, 383-396.	6.2	190
25	Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. ELife, 2019, 8, .	2.8	184
26	Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12617-12622.	3.3	179
27	Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Molecular Psychiatry, 2015, 20, 703-717.	4.1	164
28	Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nature Neuroscience, 2013, 16, 434-440.	7.1	145
29	Molecular Signatures of Human Induced Pluripotent Stem Cells Highlight Sex Differences and Cancer Genes. Cell Stem Cell, 2012, 11, 75-90.	5.2	143
30	Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Molecular Psychiatry, 2015, 20, 573-584.	4.1	132
31	Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4462-E4471.	3.3	129
32	Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia, 2014, 28, 680-689.	3.3	128
33	Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Human Molecular Genetics, 2014, 23, 2005-2022.	1.4	121
34	A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests. PLoS ONE, 2013, 8, e71323.	1.1	118
35	Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotemporal Dementia. Journal of Neuroscience, 2017, 37, 9917-9924.	1.7	117
36	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	15.2	111

#	Article	IF	Citations
37	Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18342-18347.	3.3	109
38	HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease. Nature Communications, 2020, 11, 2484.	5.8	107
39	Brain-Penetrant LSD1 Inhibitors Can Block Memory Consolidation. ACS Chemical Neuroscience, 2012, 3, 120-128.	1.7	104
40	A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Molecular Psychiatry, 2020, 25, 2712-2727.	4.1	100
41	AKT Kinase Activity Is Required for Lithium to Modulate Mood-Related Behaviors in Mice. Neuropsychopharmacology, 2011, 36, 1397-1411.	2.8	98
42	An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. Journal of Biological Chemistry, 2017, 292, 19209-19225.	1.6	98
43	Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nature Communications, 2020, 11 , 3258.	5.8	96
44	Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chemical Science, 2015, 6, 804-815.	3.7	93
45	Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability. Stem Cell Reports, 2016, 7, 325-340.	2.3	92
46	Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiology of Learning and Memory, 2011, 96, 41-52.	1.0	90
47	Crebinostat: A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology, 2013, 64, 81-96.	2.0	87
48	Classics in Chemical Neuroscience: Ketamine. ACS Chemical Neuroscience, 2017, 8, 1122-1134.	1.7	87
49	Synapse microarray identification of small molecules that enhance synaptogenesis. Nature Communications, 2011, 2, 510.	5.8	84
50	Insights into neuroepigenetics through human histone deacetylase PET imaging. Science Translational Medicine, 2016, 8, 351ra106.	5.8	83
51	Chemical Genetic Modifier Screens. Chemistry and Biology, 2003, 10, 397-410.	6.2	82
52	In Vivo Imaging of Histone Deacetylases (HDACs) in the Central Nervous System and Major Peripheral Organs. Journal of Medicinal Chemistry, 2014, 57, 7999-8009.	2.9	82
53	Short-Chain HDAC Inhibitors Differentially Affect Vertebrate Development and Neuronal Chromatin. ACS Medicinal Chemistry Letters, 2011, 2, 39-42.	1.3	81
54	High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Research, 1998, 58, 5701-6.	0.4	79

#	Article	IF	CITATIONS
55	The principle of complementarity: chemical versus biological space. Current Opinion in Chemical Biology, 2005, 9, 296-303.	2.8	76
56	Unbiased Cell-based Screening in a Neuronal Cell Model of Batten Disease Highlights an Interaction between Ca2+ Homeostasis, Autophagy, and CLN3 Protein Function. Journal of Biological Chemistry, 2015, 290, 14361-14380.	1.6	75
57	A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Science Translational Medicine, $2019,11,.$	5.8	75
58	Light-controlled modulation of gene expression by chemical optoepigenetic probes. Nature Chemical Biology, 2016, 12, 317-323.	3.9	74
59	Cis-acting regulation of brain-specific ANK3 gene expression by a genetic variant associated with bipolar disorder. Molecular Psychiatry, 2013, 18, 922-929.	4.1	73
60	ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell, 2021, 184, 4547-4563.e17.	13.5	73
61	Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 73, 87-103.	2.5	72
62	Discovery of a Highly Selective Glycogen Synthase Kinaseâ€3 Inhibitor (PFâ€04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging. Angewandte Chemie - International Edition, 2016, 55, 9601-9605.	7.2	68
63	A High-Throughput Screen for Wnt/ \hat{l}^2 -Catenin Signaling Pathway Modulators in Human iPSC-Derived Neural Progenitors. Journal of Biomolecular Screening, 2012, 17, 1252-1263.	2.6	67
64	\hat{l}^2 2-Adrenergic receptor agonist ameliorates phenotypes and corrects microRNA-mediated IGF1 deficits in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9947-9952.	3.3	67
65	A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports, 2019, 13, 939-955.	2.3	62
66	Disruption of a Large Intergenic Noncoding RNA in Subjects with Neurodevelopmental Disabilities. American Journal of Human Genetics, 2012, 91, 1128-1134.	2.6	61
67	HDAC6 Brain Mapping with [¹⁸ F]Bavarostat Enabled by a Ru-Mediated Deoxyfluorination. ACS Central Science, 2017, 3, 1006-1014.	5.3	60
68	Chemical Genomic Profiling of Biological Networks Using Graph Theory and Combinations of Small Molecule Perturbations. Journal of the American Chemical Society, 2003, 125, 10543-10545.	6.6	57
69	PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. Journal of Clinical Investigation, 2018, 129, 364-372.	3.9	57
70	Bruton's Tyrosine Kinase Revealed as a Negative Regulator of Wnt–β-Catenin Signaling. Science Signaling, 2009, 2, ra25.	1.6	56
71	Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects. ACS Chemical Biology, 2016, 11, 1952-1963.	1.6	55
72	Epigenetic mechanisms in mood disorders: Targeting neuroplasticity. Neuroscience, 2014, 264, 112-130.	1.1	54

#	Article	IF	CITATIONS
73	Human pluripotent stem cell–derived models and drug screening in CNS precision medicine. Annals of the New York Academy of Sciences, 2020, 1471, 18-56.	1.8	54
74	Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. International Journal of Molecular Sciences, 2020, 21, 8948.	1.8	53
75	Image-Guided Synthesis Reveals Potent Blood-Brain Barrier Permeable Histone Deacetylase Inhibitors. ACS Chemical Neuroscience, 2014, 5, 588-596.	1.7	51
76	Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 4008-4015.	1.4	51
77	Chemical-Genetic Screen Identifies Riluzole as an Enhancer of Wnt/ \hat{l}^2 -catenin Signaling in Melanoma. Chemistry and Biology, 2010, 17, 1177-1182.	6.2	49
78	Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Molecular and Cellular Neurosciences, 2016, 73, 104-115.	1.0	49
79	Classics in Chemical Neuroscience: Haloperidol. ACS Chemical Neuroscience, 2017, 8, 444-453.	1.7	48
80	A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas. Oncotarget, 2015, 6, 16981-16997.	0.8	46
81	Lysine Deacetylation by HDAC6 Regulates the Kinase Activity of AKT in Human Neural Progenitor Cells. ACS Chemical Biology, 2017, 12, 2139-2148.	1.6	43
82	Emerging roles of epigenetic mechanisms in Parkinson's disease. Functional and Integrative Genomics, 2011, 11, 523-537.	1.4	42
83	The DNA damage mark pH2AX differentiates the cytotoxic effects of small molecule HDAC inhibitors in ovarian cancer cells. Cancer Biology and Therapy, 2011, 12, 484-493.	1.5	42
84	HDAC6 Inhibitors Modulate Lys49 Acetylation and Membrane Localization of \hat{l}^2 -Catenin in Human iPSC-Derived Neuronal Cells. ACS Chemical Biology, 2015, 10, 883-890.	1.6	40
85	Revealing Complex Traits with Small Molecules and Naturally Recombinant Yeast Strains. Chemistry and Biology, 2006, 13, 319-327.	6.2	38
86	PET Imaging Demonstrates Histone Deacetylase Target Engagement and Clarifies Brain Penetrance of Known and Novel Small Molecule Inhibitors in Rat. ACS Chemical Neuroscience, 2014, 5, 1055-1062.	1.7	36
87	Advances toward precision medicine for bipolar disorder: mechanisms & molecules. Molecular Psychiatry, 2021, 26, 168-185.	4.1	36
88	AAK1 Identified as an Inhibitor of Neuregulin-1/ErbB4-Dependent Neurotrophic Factor Signaling Using Integrative Chemical Genomics and Proteomics. Chemistry and Biology, 2011, 18, 891-906.	6.2	34
89	Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis. Human Molecular Genetics, 2011, 20, 2344-2355.	1.4	34
90	Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Translational Psychiatry, 2014, 4, e428-e428.	2.4	34

#	Article	IF	Citations
91	Diversity-Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β. ACS Medicinal Chemistry Letters, 2016, 7, 852-856.	1.3	34
92	High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nature Communications, 2018, 9, 5142.	5.8	34
93	Translation: Screening for Novel Therapeutics With Disease-Relevant Cell Types Derived from Human Stem Cell Models. Biological Psychiatry, 2014, 75, 952-960.	0.7	33
94	Selectivity and Kinetic Requirements of HDAC Inhibitors as Progranulin Enhancers for Treating Frontotemporal Dementia. Cell Chemical Biology, 2017, 24, 892-906.e5.	2.5	31
95	Structural Basis for Achieving GSK-3β Inhibition with High Potency, Selectivity, and Brain Exposure for Positron Emission Tomography Imaging and Drug Discovery. Journal of Medicinal Chemistry, 2019, 62, 9600-9617.	2.9	31
96	Mapping Chemical Space Using Molecular Descriptors and Chemical Genetics: Deacetylase Inhibitors. Combinatorial Chemistry and High Throughput Screening, 2004, 7, 669-76.	0.6	29
97	TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Molecular Autism, 2020, 11, 2.	2.6	29
98	PDGFRÎ ² Expression and Function in Fibroblasts Derived from Pluripotent Cells is Linked to DNA Demethylation. Journal of Cell Science, 2012, 125, 2276-87.	1.2	28
99	Class I HDAC imaging using [³ H]CI-994 autoradiography. Epigenetics, 2013, 8, 756-764.	1.3	28
100	Highly Expandable Human iPS Cell–Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and Highâ€Throughput Screening. Current Protocols in Human Genetics, 2017, 92, 21.8.1-21.8.21.	3.5	28
101	SpectralNETan application for spectral graph analysis and visualization. BMC Bioinformatics, 2005, 6, 260.	1.2	26
102	Dissecting structure–activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1265-1271.	1.0	26
103	Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling. Translational Psychiatry, 2018, 8, 135.	2.4	26
104	Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation. IScience, 2021, 24, 103256.	1.9	26
105	Chemogenomic analysis reveals key role for lysine acetylation in regulating Arc stability. Nature Communications, 2017, 8, 1659.	5 . 8	25
106	Class I Histone Deacetylase Inhibition by Tianeptinaline Modulates Neuroplasticity and Enhances Memory. ACS Chemical Neuroscience, 2018, 9, 2262-2273.	1.7	25
107	Small Molecule Modulation of the Human Chromatid Decatenation Checkpoint. Chemistry and Biology, 2003, 10, 1267-1279.	6.2	23
108	Development of [$<$ sup $>$ 18 $<$ /sup $>$ F]Maleimide-Based Glycogen Synthase Kinase-3 \hat{l}^2 Ligands for Positron Emission Tomography Imaging. ACS Medicinal Chemistry Letters, 2017, 8, 287-292.	1.3	22

#	Article	IF	Citations
109	EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro-Oncology, 2018, 20, 1185-1196.	0.6	22
110	Drug discovery for psychiatric disorders using high-content single-cell screening of signaling network responses ex vivo. Science Advances, 2019, 5, eaau9093.	4.7	22
111	Automated Structure–Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles. Journal of Biomolecular Screening, 2014, 19, 738-748.	2.6	19
112	WNT/ \hat{l}^2 -Catenin Pathway and Epigenetic Mechanisms Regulate the Pitt-Hopkins Syndrome and Schizophrenia Risk Gene TCF4. Molecular Neuropsychiatry, 2017, 3, 53-71.	3.0	19
113	Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA). Molecular and Cellular Neurosciences, 2019, 99, 103386.	1.0	19
114	Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS ONE, 2021, 16, e0252048.	1.1	19
115	Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain. American Journal of Nuclear Medicine and Molecular Imaging, 2013, 4, 29-38.	1.0	18
116	Targeting Tau Mitigates Mitochondrial Fragmentation and Oxidative Stress in Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2022, 59, 683-702.	1.9	18
117	Stem cell models of neuropsychiatric disorders. Molecular and Cellular Neurosciences, 2016, 73, 1-2.	1.0	17
118	Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2. PLoS ONE, 2018, 13, e0197350.	1.1	17
119	Kinetic Tuning of HDAC Inhibitors Affords Potent Inducers of Progranulin Expression. ACS Chemical Neuroscience, 2019, 10, 3769-3777.	1.7	16
120	Detecting Binding Interactions Using Microarrays of Natural Product Extracts. Journal of the American Chemical Society, 2007, 129, 11346-11347.	6.6	15
121	Positron emission tomography probes targeting bromodomain and extra-terminal (BET) domains to enable <i>in vivo</i> neuroepigenetic imaging. Chemical Communications, 2019, 55, 12932-12935.	2.2	15
122	Design, Synthesis, and Evaluation of Thienodiazepine Derivatives as Positron Emission Tomography Imaging Probes for Bromodomain and Extra-Terminal Domain Family Proteins. Journal of Medicinal Chemistry, 2021, 64, 14745-14756.	2.9	15
123	Activity-dependent Regulation of Histone Lysine Demethylase KDM1A by a Putative Thiol/Disulfide Switch. Journal of Biological Chemistry, 2016, 291, 24756-24767.	1.6	14
124	Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity <i>via</i> <scp>H3K4</scp> methylation. Psychiatry and Clinical Neurosciences, 2016, 70, 536-550.	1.0	14
125	An Autophagy Modifier Screen Identifies Small Molecules Capable of Reducing Autophagosome Accumulation in a Model of CLN3-Mediated Neurodegeneration. Cells, 2019, 8, 1531.	1.8	14
126	Exifone Is a Potent HDAC1 Activator with Neuroprotective Activity in Human Neuronal Models of Neurodegeneration. ACS Chemical Neuroscience, 2021, 12, 271-284.	1.7	14

#	Article	IF	CITATIONS
127	Discovery and Optimization of Tau Targeted Protein Degraders Enabled by Patient Induced Pluripotent Stem Cells-Derived Neuronal Models of Tauopathy. Frontiers in Cellular Neuroscience, 2022, 16, 801179.	1.8	14
128	FDG-PET imaging reveals local brain glucose utilization is altered by class I histone deacetylase inhibitors. Neuroscience Letters, 2013, 550, 119-124.	1.0	13
129	Benzothiazole-Based LRRK2 Inhibitors as Wnt Enhancers and Promoters of Oligodendrocytic Fate. Journal of Medicinal Chemistry, 2020, 63, 2638-2655.	2.9	10
130	Discovery of suppressors of CRMP2 phosphorylation reveals compounds that mimic the behavioral effects of lithium on amphetamine-induced hyperlocomotion. Translational Psychiatry, 2020, 10, 76.	2.4	10
131	Chemical Genomics. Molecular Diagnosis and Therapy, 2004, 4, 313-320.	3.3	9
132	Radiosynthesis and in vivo evaluation of a new positron emission tomography radiotracer targeting bromodomain and extra-terminal domain (BET) family proteins. Nuclear Medicine and Biology, 2020, 84-85, 96-101.	0.3	9
133	Histone deacetylase knockouts modify transcription, CAG instability and nuclear pathology in Huntington disease mice. ELife, 2020, 9, .	2.8	9
134	Regulation of Primitive Hematopoiesis by Class I Histone Deacetylases. Developmental Dynamics, 2013, 242, 108-121.	0.8	8
135	High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy. Scientific Reports, 2021, 11, 17029.	1.6	8
136	Tool inhibitors and assays to interrogate the biology of the TRAF2 and NCK interacting kinase. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1962-1967.	1.0	7
137	Phosphorylationâ€dependent control of Activityâ€regulated cytoskeletonâ€associated protein (Arc) protein by TNIK. Journal of Neurochemistry, 2021, 158, 1058-1073.	2.1	7
138	Identification and Mechanistic Characterization of a Peptide Inhibitor of Glycogen Synthase Kinase (GSK3 \hat{I}^2) Derived from the Disrupted in Schizophrenia 1 (DISC1) Protein. ACS Chemical Neuroscience, 2020, 11, 4128-4138.	1.7	6
139	Chemical Genetics Identifies Small-Molecule Modulators of Neuritogenesis Involving Neuregulin-1/ErbB4 Signaling. ACS Chemical Neuroscience, 2010, 1, 325-342.	1.7	5
140	Brain-specific deletion of GIT1 impairs cognition and alters phosphorylation of synaptic protein networks implicated in schizophrenia susceptibility. Molecular Psychiatry, 2022, 27, 3272-3285.	4.1	5
141	HDAC Inhibitors as Novel Therapeutics in Aging and Alzheimer's Disease. , 2013, , 225-248.		3
142	Epigenetic diagnostics for neuropsychiatric disorders. Neurology, 2015, 84, 1618-1619.	1.5	3
143	Active immunotherapy and alternative therapeutic modalities for Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12090.	1.8	3
144	Differentiation of Human Induced Pluripotent Stem Cells into Cortical Neurons to Advance Precision Medicine. Methods in Molecular Biology, 2022, 2429, 143-174.	0.4	2

#	Article	IF	CITATIONS
145	Will cell alliance breed bureaucracy and leave contributors out?. Nature, 2000, 403, 591-591.	13.7	0
146	CSIG-42. HIGH THROUGHPUT KINOME AND TRANSCRIPTOME ANALYSES REVEAL NOVEL THERAPEUTIC TARGETS IN NF2-DEFICIENT MENINGIOMA. Neuro-Oncology, 2018, 20, vi52-vi52.	0.6	0
147	Induced pluripotent stem cells as tools to investigate the neurobiology of bipolar disorder and advance novel therapeutic discovery., 2021,, 155-173.		0