Yingchun Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6161522/publications.pdf

Version: 2024-02-01

840776 940533 16 520 11 16 citations h-index g-index papers 16 16 16 611 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controllable Heterojunctions with a Semicoherent Phase Boundary Boosting the Potassium Storage of CoSe ₂ /FeSe ₂ . Advanced Materials, 2021, 33, e2102471.	21.0	142
2	Stability and reaction thermodynamics of boron-doped nitrogenated holey graphene (NHG) monolayers and their energy storage properties for Li, Na and K-ion batteries: A first principles investigation. Applied Surface Science, 2021, 559, 149849.	6.1	11
3	Controllable Heterojunctions with a Semicoherent Phase Boundary Boosting the Potassium Storage of CoSe ₂ /FeSe ₂ (Adv. Mater. 37/2021). Advanced Materials, 2021, 33, 2170288.	21.0	2
4	Organic 2,5-dihydroxy-1,4-benzoquinone potassium salt with ultrahigh initial coulombic efficiency for potassium-ion batteries. Chemical Communications, 2020, 56, 12234-12237.	4.1	25
5	Assessing electrochemical properties and diffusion dynamics of metal ions (Na, K, Ca, Mg, Al and Zn) on a C ₂ N monolayer as an anode material for non-lithium ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 21208-21221.	2.8	30
6	Superior Thermoelectric Performance of Ordered Double Transition Metal MXenes: $Cr < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > T < sub > 2 < / sub > 2 < / sub > T < sub > 2 < / su$	4.6	49
7	Evolution of the Structural, Mechanical, and Phonon Properties of GeSe Polymorphs in a Pressure-Induced Second-Order Phase Transition. Materials, 2019, 12, 3612.	2.9	7
8	Improved Transport Properties and Novel Li Diffusion Dynamics in van der Waals C ₂ N/Graphene Heterostructure as Anode Materials for Lithium-Ion Batteries: A First-Principles Investigation. Journal of Physical Chemistry C, 2019, 123, 3353-3367.	3.1	43
9	Exploration work function and optical properties of monolayer SnSe allotropes. Superlattices and Microstructures, 2018, 114, 251-258.	3.1	57
10	Potassium terephthalate/graphene nanocomposite as advanced anode for low-cost Na-ion batteries. Journal of Electroanalytical Chemistry, 2018, 827, 145-150.	3.8	13
11	Alkali-metal-embedded in monolayer MoS2: optical properties and work functions. Optical and Quantum Electronics, 2018, 50, $1.$	3.3	8
12	Thermoelectric properties of graphene nanoribbons with surface roughness. Applied Physics Letters, 2018, 112, .	3.3	20
13	Adsorption of alkali-metal atoms on GaN nanowires photocathode. Applied Surface Science, 2017, 423, 829-835.	6.1	56
14	Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O). Journal of Electronic Materials, 2017, 46, 510-519.	2.2	2
15	Anisotropic elasticity, sound velocity and thermal conductivity of TiO2 polymorphs from first principles calculations. Computational Materials Science, 2014, 82, 202-218.	3.0	41
16	Theoretical study on stability, mechanical properties and thermodynamic parameters of the orthorhombic-A2N2O (A=C, Si and Ge). Physica B: Condensed Matter, 2012, 407, 2190-2200.	2.7	14