
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6161247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews, 2022, 51, 464-484.	18.7	144
2	A customized long acting formulation of the kisspeptin analog <scp>C6</scp> triggers ovulation in anestrus ewe. Journal of Neuroendocrinology, 2022, 34, e13121.	1.2	1
3	Solidâ€state NMR spectroscopy as a powerful tool to investigate the location of fluorinated lipids in highly porous hybrid organic–inorganic nanoparticles. Magnetic Resonance in Chemistry, 2021, 59, 1038-1047.	1.1	3
4	Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy. Nanomaterials, 2021, 11, 722.	1.9	26
5	Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings: Insights on Drug Location by Solid State NMR Spectroscopy. Nanomaterials, 2021, 11, 945.	1.9	20
6	Solid-State NMR Spectroscopy: A Key Tool to Unravel the Supramolecular Structure of Drug Delivery Systems. Molecules, 2021, 26, 4142.	1.7	5
7	Deciphering the Structure and Chemical Composition of Drug Nanocarriers: From Bulk Approaches to Individual Nanoparticle Characterization. Particle and Particle Systems Characterization, 2021, 38, 2100022.	1.2	5
8	Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica B, 2021, 11, 2362-2395.	5.7	197
9	An original methodology to study polymeric nanoparticle-macrophage interactions: Nanoparticle tracking analysis in cell culture media and quantification of the internalized objects. International Journal of Pharmaceutics, 2021, 610, 121202.	2.6	7
10	Porous nanoparticles with engineered shells release their drug cargo in cancer cells. International Journal of Pharmaceutics, 2021, 610, 121230.	2.6	7
11	Compartmentalized Polymeric Nanoparticles Deliver Vancomycin in a pH-Responsive Manner. Pharmaceutics, 2021, 13, 1992.	2.0	6
12	Highly Porous Hybrid Metal–Organic Nanoparticles Loaded with Gemcitabine Monophosphate: a Multimodal Approach to Improve Chemo―and Radiotherapy. ChemMedChem, 2020, 15, 274-283.	1.6	25
13	Drug-Loaded Lipid-Coated Hybrid Organic-Inorganic "Stealth―Nanoparticles for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1027.	2.0	19
14	Glycoside scutellarin enhanced CD-MOF anchoring for laryngeal delivery. Acta Pharmaceutica Sinica B, 2020, 10, 1709-1718.	5.7	20
15	Metal-organic frameworks for drug delivery: Degradation mechanism and in vivo fate. , 2020, , 467-489.		11
16	Fragment-Based Optimized EthR Inhibitors with <i>in Vivo</i> Ethionamide Boosting Activity. ACS Infectious Diseases, 2020, 6, 366-378.	1.8	15
17	Self-assembled multifunctional core–shell highly porous metal–organic framework nanoparticles. International Journal of Pharmaceutics, 2020, 581, 119281.	2.6	9
18	Carbohydrates in metal organic frameworks: Supramolecular assembly and surface modification for		6

biomedical applications. , 2020, , 445-465.

#	Article	IF	CITATIONS
19	Efficient incorporation and protection of lansoprazole in cyclodextrin metal-organic frameworks. International Journal of Pharmaceutics, 2020, 585, 119442.	2.6	15
20	Design of Engineered Cyclodextrin Derivatives for Spontaneous Coating of Highly Porous Metal-Organic Framework Nanoparticles in Aqueous Media. Nanomaterials, 2019, 9, 1103.	1.9	28
21	Ultrafine Silver Nanoparticles: Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metalâ€Organic Frameworks with GRGDS Functionalization to Promote Antibacterial and Wound Healing Application (Small 27/2019). Small, 2019, 15, 1970145.	5.2	2
22	Comb-like dextran copolymers: A versatile strategy to coat highly porous MOF nanoparticles with a PEG shell. Carbohydrate Polymers, 2019, 223, 115085.	5.1	27
23	Water-Soluble Poly(3-hydroxyalkanoate) Sulfonate: Versatile Biomaterials Used as Coatings for Highly Porous Nano-Metal Organic Framework. Biomacromolecules, 2019, 20, 3324-3332.	2.6	18
24	One‣tep Photochemical Green Synthesis of Waterâ€Dispersible Ag, Au, and Au@Ag Core–Shell Nanoparticles. Chemistry - A European Journal, 2019, 25, 14638-14643.	1.7	9
25	Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metalâ€Organic Frameworks with GRGDS Functionalization to Promote Antibacterial and Wound Healing Application. Small, 2019, 15, e1901065.	5.2	109
26	A novel codrug made of the combination of ethionamide and its potentiating booster: synthesis, self-assembly into nanoparticles and antimycobacterial evaluation. Organic and Biomolecular Chemistry, 2019, 17, 5129-5137.	1.5	10
27	Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as Drug Nanocarriers against Tuberculosis. ACS Nano, 2019, 13, 3992-4007.	7.3	42
28	Combinatorial Drug Therapy: Compartmentalized Encapsulation of Two Antibiotics in Porous Nanoparticles: an Efficient Strategy to Treat Intracellular Infections (Part. Part. Syst. Charact. 3/2019). Particle and Particle Systems Characterization, 2019, 36, 1970009.	1.2	2
29	Compartmentalized Encapsulation of Two Antibiotics in Porous Nanoparticles: an Efficient Strategy to Treat Intracellular Infections. Particle and Particle Systems Characterization, 2019, 36, 1800360.	1.2	24
30	New insights on the supramolecular structure of highly porous core–shell drug nanocarriers using solid-state NMR spectroscopy. RSC Advances, 2019, 9, 32472-32475.	1.7	8
31	Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharmaceutica Sinica B, 2019, 9, 97-106.	5.7	91
32	A "Ship-in-a-Bottle―strategy to create folic acid nanoclusters inside the nanocages of γ-cyclodextrin metal-organic frameworks. International Journal of Pharmaceutics, 2019, 556, 89-96.	2.6	61
33	Highâ€Resolution Labelâ€Free Detection of Biocompatible Polymeric Nanoparticles in Cells. Particle and Particle Systems Characterization, 2018, 35, 1700457.	1.2	27
34	Nanoparticles with high payloads of pipemidic acid, a poorly soluble crystalline drug: drug-initiated polymerization and self-assembly approach. Acta Pharmaceutica Sinica B, 2018, 8, 420-431.	5.7	11
35	How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping AFM-IR. Analyst, The, 2018, 143, 5940-5949.	1.7	57
36	Multifunctional core–shell polymeric and hybrid nanoparticles as anticancer nanomedicines. , 2018, ,		4

nal core–shell polymeric and hy articles as anticancer nanomedicines. , 2018, , 36 bria nanop 109-160.

#	Article	IF	CITATIONS
37	GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness. Small, 2018, 14, e1801900.	5.2	69
38	Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal–organic framework nanoparticles. Analytical and Bioanalytical Chemistry, 2018, 410, 5245-5253.	1.9	21
39	Evaluation of drug loading capabilities of Î ³ -cyclodextrin-metal organic frameworks by high performance liquid chromatography. Journal of Chromatography A, 2017, 1488, 37-44.	1.8	31
40	A non-covalent "click chemistry―strategy to efficiently coat highly porous MOF nanoparticles with a stable polymeric shell. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1606-1616.	1.1	31
41	Template-directed synthesis of a cubic cyclodextrin polymer with aligned channels and enhanced drug payload. RSC Advances, 2017, 7, 20789-20794.	1.7	58
42	Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale, 2017, 9, 7454-7463.	2.8	200
43	Poly(β-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chinese Journal of Polymer Science (English Edition), 2017, 35, 693-699.	2.0	72
44	Cyclodextrin-based nanocarriers containing a synergic drug combination: A potential formulation for pulmonary administration of antitubercular drugs. International Journal of Pharmaceutics, 2017, 531, 577-587.	2.6	26
45	Ordered and disordered cyclodextrin nanosponges with diverse physicochemical properties. RSC Advances, 2017, 7, 23759-23764.	1.7	28
46	Efficient loading of ethionamide in cyclodextrin-based carriers offers enhanced solubility and inhibition of drug crystallization. International Journal of Pharmaceutics, 2017, 531, 568-576.	2.6	17
47	Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles. International Journal of Pharmaceutics, 2017, 531, 424-432.	2.6	68
48	Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks. Pharmaceutical Research, 2017, 34, 269-278.	1.7	69
49	Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers. Journal of Materials Chemistry B, 2017, 5, 8563-8569.	2.9	29
50	A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie, 2017, 129, 15771-15775.	1.6	87
51	A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie - International Edition, 2017, 56, 15565-15569.	7.2	118
52	Positively charged cyclodextrins as effective molecular transporters of active phosphorylated forms of gemcitabine into cancer cells. Scientific Reports, 2017, 7, 8353.	1.6	14
53	Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Scientific Reports, 2017, 7, 5390.	1.6	74
54	Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. Chemical Communications, 2017, 53, 9246-9249.	2.2	93

#	Article	IF	CITATIONS
55	Spontaneous Self-Assembly of Polymeric Nanoparticles in Aqueous Media: New Insights From Microfluidics, In Situ Size Measurements, and Individual Particle Tracking. Journal of Pharmaceutical Sciences, 2017, 106, 395-401.	1.6	7
56	Smart Polymeric Nanocarriers. Journal of Nanomaterials, 2016, 2016, 1-2.	1.5	4
57	In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration. International Journal of Pharmaceutics, 2016, 511, 1042-1047.	2.6	63
58	Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption. International Journal of Pharmaceutics, 2016, 514, 212-219.	2.6	114
59	Cyclodextrin-assisted assembly of PEGylated polyester nanoparticles decorated with folate. Colloids and Surfaces B: Biointerfaces, 2016, 141, 148-157.	2.5	19
60	Small is beautiful: Surprising nanoparticles. International Journal of Pharmaceutics, 2016, 502, 219-231.	2.6	17
61	Antineoplastic busulfan encapsulated in a metal organic framework nanocarrier: first in vivo results. Journal of Materials Chemistry B, 2016, 4, 585-588.	2.9	34
62	Cyclodextrin-based Polymeric Nanoparticles as Efficient Carriers for Anticancer Drugs. Current Pharmaceutical Biotechnology, 2016, 17, 248-255.	0.9	37
63	An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance. Scientific Reports, 2015, 5, 13500.	1.6	68
64	A Multicomponent Gel for Nitric Oxide Photorelease with Fluorescence Reporting. Asian Journal of Organic Chemistry, 2015, 4, 256-261.	1.3	9
65	Multilamellar Nanoparticles Self-Assembled from Opposite Charged Blends: Insights from Mesoscopic Simulation. Journal of Physical Chemistry C, 2015, 119, 20649-20661.	1.5	23
66	Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine, 2015, 10, 3033-3055.	1.7	35
67	Efficient "green―encapsulation of a highly hydrophilic anticancer drug in metal–organic framework nanoparticles. Journal of Drug Targeting, 2015, 23, 759-767.	2.1	66
68	Trends in the development of oral anticoagulants. Therapeutic Delivery, 2015, 6, 685-703.	1.2	0
69	Interfacial behavior of PEGylated lipids and their effect on the stability of squalenoyl-drug nanoassemblies. International Journal of Pharmaceutics, 2014, 471, 75-82.	2.6	6
70	A multi-photoresponsive supramolecular hydrogel with dual-color fluorescence and dual-modal photodynamic action. Journal of Materials Chemistry B, 2014, 2, 3443-3449.	2.9	36
71	A polymer-based nanodevice for the photoregulated release of NO with two-photon fluorescence reporting in skin carcinoma cells. Journal of Materials Chemistry B, 2014, 2, 1190.	2.9	30
72	Novel self assembling nanoparticles for the oral administration of fondaparinux: Synthesis, characterization and in vivo evaluation. Journal of Controlled Release, 2014, 194, 323-331.	4.8	26

#	Article	IF	CITATIONS
73	A multi-photoresponsive molecular-hybrid for dual-modal photoinactivation of cancer cells. RSC Advances, 2014, 4, 44827-44836.	1.7	13
74	Synthetic and bioinspired cage nanoparticles for drug delivery. Nanomedicine, 2014, 9, 1545-1564.	1.7	40
75	Host–Guest Interactions in Fe(III)-Trimesate MOF Nanoparticles Loaded with Doxorubicin. Journal of Physical Chemistry B, 2014, 118, 8532-8539.	1.2	121
76	Two-Photon Fluorescence Imaging and Bimodal Phototherapy of Epidermal Cancer Cells with Biocompatible Self-Assembled Polymer Nanoparticles. Biomacromolecules, 2014, 15, 1768-1776.	2.6	50
77	A "Ship in a Bottle―Strategy To Load a Hydrophilic Anticancer Drug in Porous Metal Organic Framework Nanoparticles: Efficient Encapsulation, Matrix Stabilization, and Photodelivery. Journal of Medicinal Chemistry, 2014, 57, 411-420.	2.9	98
78	Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(iii) metal–organic framework MIL-100(Fe) nanoparticles. Journal of Materials Chemistry B, 2013, 1, 4231.	2.9	69
79	Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochemical and Photobiological Sciences, 2013, 12, 1841-1854.	1.6	56
80	A permeation method for detection of self-aggregation of doxorubicin in aqueous environment. International Journal of Pharmaceutics, 2013, 454, 559-561.	2.6	96
81	Towards an Improved antiâ€HIV Activity of NRTI via Metal–Organic Frameworks Nanoparticles. Advanced Healthcare Materials, 2013, 2, 1630-1637.	3.9	130
82	In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chemical Science, 2013, 4, 1597.	3.7	313
83	Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies. Biomaterials, 2013, 34, 4831-4838.	5.7	31
84	An engineered nanoplatform for bimodal anticancer phototherapy with dual-color fluorescence detection of sensitizers. Chemical Communications, 2013, 49, 4459.	2.2	73
85	A NO photoreleasing supramolecular hydrogel with bactericidal action. Journal of Materials Chemistry B, 2013, 1, 3458.	2.9	25
86	â€~Green' fluorine-free mesoporous iron(III) trimesate nanoparticles for drug delivery. Green Materials, 2013, 1, 209-217.	1.1	37
87	Photoinduced Fluorescence Activation and Nitric Oxide Release with Biocompatible Polymer Nanoparticles. Chemistry - A European Journal, 2012, 18, 15782-15787.	1.7	51
88	In vitro determination of the CYP 3A4 activity in rat hepatic microsomes by liquid-phase extraction and HPLC-photodiode array detection. Journal of Pharmacological and Toxicological Methods, 2012, 66, 29-34.	0.3	8
89	Quantification of tetramethyl-terephthalic acid in rat liver, spleen and urine matrices by liquid–liquid phase extraction and HPLC-photodiode array detection. Journal of Pharmaceutical and Biomedical Analysis, 2012, 67-68, 98-103.	1.4	4
90	The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews, 2012, 64, 316-326.	6.6	144

#	Article	IF	CITATIONS
91	Self-Assembled Squalenoylated Penicillin Bioconjugates: An Original Approach for the Treatment of Intracellular Infections. ACS Nano, 2012, 6, 3820-3831.	7.3	112
92	β-Cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study. Photochemical and Photobiological Sciences, 2012, 11, 1285-1292.	1.6	51
93	Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112, 1232-1268.	23.0	3,593
94	Squalenoylation: A generic platform for nanoparticular drug delivery. Journal of Controlled Release, 2012, 161, 609-618.	4.8	115
95	Squalene Based Nanocomposites: A New Platform for the Design of Multifunctional Pharmaceutical Theragnostics. ACS Nano, 2011, 5, 1513-1521.	7.3	141
96	Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry, 2011, 21, 2220-2227.	6.7	263
97	Quantification of fumaric acid in liver, spleen and urine by high-performance liquid chromatography coupled to photodiode-array detection. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 758-762.	1.4	39
98	Synthesis and physicochemical characterization of new squalenoyl amphiphilic gadolinium complexes as nanoparticle contrast agents. Organic and Biomolecular Chemistry, 2011, 9, 4367.	1.5	23
99	Synthesis, Characterization, and in Vivo Delivery of siRNA-Squalene Nanoparticles Targeting Fusion Oncogene in Papillary Thyroid Carcinoma. Journal of Medicinal Chemistry, 2011, 54, 4067-4076.	2.9	75
100	Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine, 2011, 6, 1683-1695.	1.7	95
101	Interfacial rheology as a tool to study the potential of cyclodextrin polymers to stabilize oil–water interfaces. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 475-479.	1.6	13
102	Quantification of trimesic acid in liver, spleen and urine by high-performance liquid chromatography coupled to a photodiode-array detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2311-2314.	1.2	8
103	A comprehensive study of the spontaneous formation of nanoassemblies in water by a "lock-and-key― interaction between two associative polymers. Journal of Colloid and Interface Science, 2011, 354, 517-527.	5.0	43
104	BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angewandte Chemie - International Edition, 2010, 49, 6260-6266.	7.2	1,074
105	Porous metal–organic-framework nanoscale carriers as a potential platform for drug deliveryÂand imaging. Nature Materials, 2010, 9, 172-178.	13.3	3,629
106	Cyclodextrins for drug delivery. Journal of Drug Targeting, 2010, 18, 645-656.	2.1	174
107	Efficient Loading and Controlled Release of Benzophenone-3 Entrapped into Self-Assembling Nanogels. Current Nanoscience, 2010, 6, 654-665.	0.7	21
108	A comprehensive study on the inclusion mechanism of benzophenone into supramolecular nanoassemblies prepared using two water-soluble associative polymers. Journal of Thermal Analysis and Calorimetry, 2009, 98, 57-64.	2.0	20

#	Article	IF	CITATIONS
109	Microcalorimetric investigation on the formation of supramolecular nanoassemblies of associative polymers loaded with gadolinium chelate derivatives. International Journal of Pharmaceutics, 2009, 379, 218-225.	2.6	22
110	Cyclodextrin and Polysaccharide-Based Nanogels: Entrapment of Two Hydrophobic Molecules, Benzophenone and Tamoxifen. Biomacromolecules, 2009, 10, 547-554.	2.6	129
111	Highâ€Relaxivity Magnetic Resonance Imaging (MRI) Contrast Agent Based on Supramolecular Assembly between a Gadolinium Chelate, a Modified Dextran, and Polyâ€Î²â€Cyclodextrin. Chemistry - A European Journal, 2008, 14, 4551-4561.	1.7	99
112	Selfâ€assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs. Journal of Biomedical Materials Research - Part A, 2008, 86A, 736-748.	2.1	58
113	Novel PEGylated Nanoassemblies Made of Selfâ€Assembled Squalenoyl Nucleoside Analogues. Advanced Functional Materials, 2008, 18, 3715-3725.	7.8	67
114	Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. International Journal of Pharmaceutics, 2008, 347, 128-135.	2.6	61
115	Development of micro- and nanosystems for drug delivery. Russian Journal of General Chemistry, 2008, 78, 2220-2229.	0.3	2
116	Aqueous Polysaccharide Associations Mediated by β-Cyclodextrin Polymers. Biomacromolecules, 2008, 9, 1434-1442.	2.6	58
117	Busulphan-loaded long-circulating nanospheres, a very attractive challenge for both galenists and pharmacologists. Journal of Microencapsulation, 2007, 24, 715-730.	1.2	7
118	Novel self-assembling nanogels: Stability and lyophilisation studies. International Journal of Pharmaceutics, 2007, 332, 185-191.	2.6	83
119	Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. International Journal of Pharmaceutics, 2007, 344, 33-43.	2.6	200
120	Spontaneous association of hydrophobized dextran and poly-β-cyclodextrin into nanoassemblies Journal of Colloid and Interface Science, 2007, 307, 83-93.	5.0	84
121	Amphiphilic derivatives of dextran and related nanoparticles. Polymer Science - Series A, 2007, 49, 708-715.	0.4	6
122	Nanotechnologies for drug delivery: Application to cancer and autoimmune diseases. Progress in Solid State Chemistry, 2006, 34, 231-235.	3.9	75
123	Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials, 2006, 27, 108-118.	5.7	178
124	New self-assembled nanogels based on host–guest interactions: Characterization and drug loading. Journal of Controlled Release, 2006, 111, 316-324.	4.8	142
125	Novel composite core-shell nanoparticles as busulfan carriers. Journal of Controlled Release, 2006, 111, 271-280.	4.8	63
126	Busulfan loading into poly(alkyl cyanoacrylate) nanoparticles: Physico-chemistry and molecular modeling. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 254-262.	1.6	17

#	Article	IF	CITATIONS
127	Freeze-Drying of Composite Core-Shell Nanoparticles. Drug Development and Industrial Pharmacy, 2006, 32, 839-846.	0.9	35
128	Interactions between hen egg-white lysozyme, PEG2,000, and PLA50 at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2005, 42, 97-106.	2.5	8
129	Physico-chemical characterization of polysaccharide-coated nanoparticles. Journal of Controlled Release, 2005, 108, 97-111.	4.8	51
130	Nanoencapsulation of a crystalline drug. International Journal of Pharmaceutics, 2005, 298, 323-327.	2.6	47
131	Pure antiestrogen RU 58668—loaded nanospheres: morphology, cell activity and toxicity studies. European Journal of Pharmaceutical Sciences, 2004, 21, 361-370.	1.9	32
132	Molecular Reactivity of Busulfan Through Its Experimental Electrostatic Properties in the Solid State. Pharmaceutical Research, 2004, 21, 598-607.	1.7	25
133	Polysaccharide-decorated nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 327-341.	2.0	441
134	Polyester-poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonization properties. Pharmaceutical Research, 2003, 20, 1063-1070.	1.7	70
135	Novel polyester-polysaccharide nanoparticles. Pharmaceutical Research, 2003, 20, 1284-1292.	1.7	80
136	The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. European Journal of Pharmaceutical Sciences, 2003, 20, 73-81.	1.9	215
137	Novel core(polyester)-shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins. Journal of Controlled Release, 2003, 92, 103-112.	4.8	108
138	In vitro andin vivo biologic evaluation of long-circulating biodegradable drug carriers loaded with the pure antiestrogen RU 58668. International Journal of Cancer, 2003, 106, 446-454.	2.3	47
139	Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials, 2003, 24, 4529-4537.	5.7	182
140	Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. International Journal of Pharmaceutics, 2003, 254, 77-82.	2.6	178
141	Polysaccharides Grafted with Polyesters: Novel Amphiphilic Copolymers for Biomedical Applications. Macromolecules, 2002, 35, 9861-9867.	2.2	124
142	Design of poly-ε-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. Journal of Controlled Release, 2002, 83, 365-375.	4.8	112
143	Development and characterization of CyA-loaded poly(lactic acid)–poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 51, 111-118.	2.0	112
144	Protein C-loaded monomethoxypoly (ethylene oxide)–poly(lactic acid) nanoparticles. International Journal of Pharmaceutics, 2001, 212, 1-9.	2.6	52

RUXANDRA GREF

#	Article	IF	CITATIONS
145	Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials, 2001, 22, 2967-2979.	5.7	291
146	Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharmaceutical Research, 2001, 18, 1411-1419.	1.7	245
147	Cure of experimental Chagas' disease by the bis-triazole DO870 incorporated into 'stealth' polyethyleneglycol-polylactide nanospheres. Journal of Antimicrobial Chemotherapy, 2001, 47, 101-104.	1.3	46
148	Les nanosphères " furtives " comme nouvelles formes galéniques injectables : espoirs et réalités Medecine/Sciences, 2001, 17, 619.	0.0	0
149	Surface modification of poly(lactic acid) nanospheres using hydrophobically modified dextrans as stabilizers in an o/w emulsion/evaporation technique. Journal of Biomedical Materials Research Part B, 2000, 50, 557-565.	3.0	99
150	â€~Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces, 2000, 18, 301-313.	2.5	1,481
151	Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. Journal of Controlled Release, 1999, 57, 259-268.	4.8	190
152	Lidocaine loaded biodegradable nanospheres. Journal of Controlled Release, 1999, 60, 169-177.	4.8	172
153	Preparation and characterization of protein C-loaded PLA nanoparticles. Journal of Controlled Release, 1999, 60, 179-188.	4.8	180
154	Polyoxyethylene-coated nanospheres: effect of coating on zeta potential and phagocytosis. Polymer International, 1999, 48, 251-256.	1.6	41
155	Interactions between a Macrophage Cell Line (J774A1) and Surface-modified Poly(D,L-lactide) Nanocapsules Bearing Poly(ethylene glycol). Journal of Drug Targeting, 1999, 7, 65-78.	2.1	82
156	Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharmaceutical Research, 1998, 15, 270-275.	1.7	360
157	The effect of hydrophile–lipophile balance of water-soluble poly(ethylene glycol)–poly(lactic acid) diblock copolymers on the stability of microscopic emulsion films and nanoemulsions. Mendeleev Communications, 1998, 8, 105-107.	0.6	3
158	Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. Journal of Controlled Release, 1998, 50, 31-40.	4.8	452
159	Interfacial and emulsion stabilising properties of amphiphilic water-soluble poly(ethylene) Tj ETQq1 1 0.784314 Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 413-420.	rgBT /Ove 2.3	rlock 10 Tf 50 25
160	PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics1. Journal of Controlled Release, 1997, 46, 223-231.	4.8	255
161	Erosion of biodegradable block copolymers made of poly(d,l-lactic acid) and poly(ethylene glycol). Biomaterials, 1997, 18, 1599-1607.	5.7	59
162	Poly(ethyleneglycol)-Coated Nanospheres: Potential Carriers for Intravenous Drug Administration. , 1997, 10, 167-198.		48

RUXANDRA GREF

#	Article	IF	CITATIONS
163	Glass transition temperature regulation effect in a poly(vinyl alcohol)—water system. Polymer, 1995, 36, 1655-1661.	1.8	70
164	The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews, 1995, 16, 215-233.	6.6	717
165	Drug Delivery from Bioerodible Polymers. ACS Symposium Series, 1994, , 242-277.	0.5	15
166	Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263, 1600-1603.	6.0	2,705
167	Transport properties of poly(vinyl alcohol) membranes of different degrees of crystallinity. I. Pervaporation results. Journal of Applied Polymer Science, 1993, 49, 209-218.	1.3	38
168	Differential permeation ? Part I: A method for the study of solvent diffusion through membranes. Colloid and Polymer Science, 1993, 271, 1134-1142.	1.0	26
169	Differential permeation. Part II: Behaviors of polyvinylalocohol films in transient permeation. Colloid and Polymer Science, 1993, 271, 1143-1151.	1.0	7
170	Influence of Membrane Properties on System Performances in Pervaporation under Concentration Polarization Regime. Separation Science and Technology, 1992, 27, 467-491.	1.3	25