
Janina Burk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6160737/publications.pdf Version: 2024-02-01

IANINA RIIDK

#	Article	IF	CITATIONS
1	Freeze-Thaw Cycles Enhance Decellularization of Large Tendons. Tissue Engineering - Part C: Methods, 2014, 20, 276-284.	2.1	106
2	Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Veterinary Journal, 2013, 195, 98-106.	1.7	98
3	Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: An approach toward a standardized definition. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 678-687.	1.5	57
4	Automated freeze-thaw cycles for decellularization of tendon tissue - a pilot study. BMC Biotechnology, 2017, 17, 13.	3.3	54
5	Induction of Tenogenic Differentiation Mediated by Extracellular Tendon Matrix and Short-Term Cyclic Stretching. Stem Cells International, 2016, 2016, 1-11.	2.5	52
6	Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model. Cell Transplantation, 2016, 25, 109-124.	2.5	39
7	Long-Term Cell Tracking following Local Injection of Mesenchymal Stromal Cells in the Equine Model of Induced Tendon Disease. Cell Transplantation, 2016, 25, 2199-2211.	2.5	38
8	Equine cellular therapy—from stall to bench to bedside?. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 103-113.	1.5	34
9	Isolation of equine multipotent mesenchymal stromal cells by enzymatic tissue digestion or explant technique: comparison of cellular properties. BMC Veterinary Research, 2013, 9, 221.	1.9	32
10	Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model. BMC Musculoskeletal Disorders, 2018, 19, 230.	1.9	31
11	Gene expression of tendon markers in mesenchymal stromal cells derived from different sources. BMC Research Notes, 2014, 7, 826.	1.4	29
12	Growth Factor-Mediated Tenogenic Induction of Multipotent Mesenchymal Stromal Cells Is Altered by the Microenvironment of Tendon Matrix. Cell Transplantation, 2018, 27, 1434-1450.	2.5	29
13	Basic Science and Clinical Application of Stem Cells in Veterinary Medicine. , 2010, 123, 219-263.		28
14	Stem cell-based tissue engineering in veterinary orthopaedics. Cell and Tissue Research, 2012, 347, 677-688.	2.9	27
15	Tenogenic Properties of Mesenchymal Progenitor Cells Are Compromised in an Inflammatory Environment. International Journal of Molecular Sciences, 2018, 19, 2549.	4.1	27
16	Longitudinal Cell Tracking and Simultaneous Monitoring of Tissue Regeneration after Cell Treatment of Natural Tendon Disease by Low-Field Magnetic Resonance Imaging. Stem Cells International, 2016, 2016, 1-13.	2.5	19
17	Transforming Growth Factor Beta 3-Loaded Decellularized Equine Tendon Matrix for Orthopedic Tissue Engineering. International Journal of Molecular Sciences, 2019, 20, 5474.	4.1	18
18	Serumâ€free human MSC medium supports consistency in human but not in equine adiposeâ€derived multipotent mesenchymal stromal cell culture. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 60-72.	1.5	16

Janina Burk

#	Article	IF	CITATIONS
19	Application of Stem Cells for the Treatment of Joint Disease in Horses. Methods in Molecular Biology, 2014, 1213, 215-228.	0.9	15
20	Decellularization of Large Tendon Specimens: Combination of Manually Performed Freeze-Thaw Cycles and Detergent Treatment. Methods in Molecular Biology, 2017, 1577, 227-237.	0.9	14
21	Scalable Production of Equine Platelet Lysate for Multipotent Mesenchymal Stromal Cell Culture. Frontiers in Bioengineering and Biotechnology, 2020, 8, 613621.	4.1	12
22	Characterisation and intracellular labelling of mesenchymal stromal cells derived from synovial fluid of horses and sheep. Veterinary Journal, 2017, 222, 1-8.	1.7	11
23	Comparison between adult and foetal adnexa derived equine post-natal mesenchymal stem cells. BMC Veterinary Research, 2019, 15, 277.	1.9	11
24	Rho/ROCK Inhibition Promotes TGF-β3-Induced Tenogenic Differentiation in Mesenchymal Stromal Cells. Stem Cells International, 2021, 2021, 1-11.	2.5	10
25	Bone marrowâ€derived multipotent mesenchymal stromal cells from horses after euthanasia. Veterinary Medicine and Science, 2017, 3, 239-251.	1.6	9
26	Extracellular Matrix Synthesis and Remodeling by Mesenchymal Stromal Cells Is Context-Sensitive. International Journal of Molecular Sciences, 2022, 23, 1758.	4.1	9
27	A novel direct co-culture assay analyzed by multicolor flow cytometry reveals context- and cell type-specific immunomodulatory effects of equine mesenchymal stromal cells. PLoS ONE, 2019, 14, e0218949.	2.5	8
28	Generation and characterization of a functional human adiposeâ€derived multipotent mesenchymal stromal cell line. Biotechnology and Bioengineering, 2019, 116, 1417-1426.	3.3	6
29	Mesenchymal Stromal Cells Adapt to Chronic Tendon Disease Environment with an Initial Reduction in Matrix Remodeling. International Journal of Molecular Sciences, 2021, 22, 12798.	4.1	6
30	Variation in the MRI signal intensity of naturally occurring equine superficial digital flexor tendinopathies over a 12â€month period. Veterinary Record, 2020, 187, e53.	0.3	5
31	Hoof kinetic patterns differ between sound and laminitic horses. Equine Veterinary Journal, 2021, 53, 503-509.	1.7	5
32	Mechanisms of Action of Multipotent Mesenchymal Stromal Cells in Tendon Disease. , 0, , .		4
33	Platelet Lysate for Mesenchymal Stromal Cell Culture in the Canine and Equine Species: Analogous but Not the Same. Animals, 2022, 12, 189.	2.3	4
34	In Vivo Magic Angle Magnetic Resonance Imaging for Cell Tracking in Equine Low-Field MRI. Stem Cells International, 2019, 2019, 1-9.	2.5	3
35	Ultrastructural characteristics of ovine bone marrowâ€derived mesenchymal stromal cells cultured with a silicon stabilized tricalcium phosphate bioceramic. Microscopy Research and Technique, 2017, 80, 1189-1198.	2.2	2
36	Editorial to the Special Issue "Stem Cell Characterization Across Speciesâ€: Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 16-18.	1.5	2

Janina Burk

#	Article	IF	CITATIONS
37	<i>>De novo</i> synthesis of glycosaminoglycans by equine multipotent mesenchymal stromal cells <i>in vitro</i> – Studied by stable isotopic labeling and matrix-assisted laser desorption ionization mass spectrometry. Journal of Carbohydrate Chemistry, 2018, 37, 69-80.	1.1	2
38	Phospholipid Profiles for Phenotypic Characterization of Adipose-Derived Multipotent Mesenchymal Stromal Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 784405.	3.7	2
39	The granulation (t)issue: A narrative and scoping review of basic and clinical research of the equine distal limb exuberant wound healing disorder. Veterinary Journal, 2022, 280, 105790.	1.7	2
40	MSC in Tendon and Joint Disease: The Context-Sensitive Link Between Targets and Therapeutic Mechanisms. Frontiers in Bioengineering and Biotechnology, 2022, 10, 855095.	4.1	2
41	A 3D Dynamic In Vitro Model of Inflammatory Tendon Disease. Methods in Molecular Biology, 2021, 2269, 167-174.	0.9	1
42	Characterization of Equine Chronic Tendon Lesions in Low- and High-Field Magnetic Resonance Imaging. Veterinary Sciences, 2022, 9, 297.	1.7	1
43	20â€Cell Therapy Of Tendinopathy: Cell Tracking And Follow-up Using Magnetic Resonance Imaging. British Journal of Sports Medicine, 2014, 48, A13-A14.	6.7	0
44	A View from the Cellular Perspective. Learning Materials in Biosciences, 2021, , 69-78.	0.4	0