
Andrew J Halayko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Apoptosis and cancer: mutations within caspase genes. Journal of Medical Genetics, 2009, 46, 497-510.	1.5	587
4	Increased Expression of IL-33 in Severe Asthma: Evidence of Expression by Airway Smooth Muscle Cells. Journal of Immunology, 2009, 183, 5094-5103.	0.4	488
5	Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. European Respiratory Journal, 2007, 29, 834-860.	3.1	344
6	Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respiratory Research, 2006, 7, 73.	1.4	327
7	Invited Review: Molecular mechanisms of phenotypic plasticity in smooth muscle cells. Journal of Applied Physiology, 2001, 90, 358-368.	1.2	241
8	S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Research, 2010, 20, 314-331.	5.7	198
9	Inhibition of allergen-induced airway remodelling by tiotropium and budesonide: a comparison. European Respiratory Journal, 2007, 30, 653-661.	3.1	190
10	Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death and Disease, 2015, 6, e1696-e1696.	2.7	166
11	Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L523-L534.	1.3	152
12	Brevininâ€2R ¹ semiâ€selectively kills cancer cells by a distinct mechanism, which involves the lysosomalâ€mitochondrial death pathway. Journal of Cellular and Molecular Medicine, 2008, 12, 1005-1022.	1.6	151
13	Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L375-L382.	1.3	141
14	The RhoA/Rho Kinase Pathway Regulates Nuclear Localization of Serum Response Factor. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 39-47.	1.4	137
15	MicroRNA Expression in Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 506-513.	1.4	137
16	IL-17A Induces Eotaxin-1/CC Chemokine Ligand 11 Expression in Human Airway Smooth Muscle Cells: Role of MAPK (Erk1/2, JNK, and p38) Pathways. Journal of Immunology, 2006, 177, 4064-4071.	0.4	133
17	Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L197-L206.	1.3	117
18	MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L727-L734.	1.3	113

#	Article	IF	CITATIONS
19	Thymic Stromal Lymphopoietin Receptor-Mediated IL-6 and CC/CXC Chemokines Expression in Human Airway Smooth Muscle Cells: Role of MAPKs (ERK1/2, p38, and JNK) and STAT3 Pathways. Journal of Immunology, 2010, 184, 7134-7143.	0.4	112
20	Mutagenesis analysis of human SM22: characterization of actin binding. Journal of Applied Physiology, 2000, 89, 1985-1990.	1.2	110
21	Th17â€associated cytokines promote human airway smooth muscle cell proliferation. FASEB Journal, 2012, 26, 5152-5160.	0.2	110
22	Differential Roles of CXCL2 and CXCL3 and Their Receptors in Regulating Normal and Asthmatic Airway Smooth Muscle Cell Migration. Journal of Immunology, 2013, 191, 2731-2741.	0.4	110
23	Role of the phosphoinositide 3-kinase p110δ in generation of type 2 cytokine responses and allergic airway inflammation. European Journal of Immunology, 2007, 37, 416-424.	1.6	106
24	Physiological Control of Smooth Muscle-specific Gene Expression through Regulated Nuclear Translocation of Serum Response Factor. Journal of Biological Chemistry, 2000, 275, 30387-30393.	1.6	104
25	Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death and Disease, 2012, 3, e330-e330.	2.7	104
26	Autophagy and the unfolded protein response promote profibrotic effects of TGF-β ₁ in human lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L493-L504.	1.3	100
27	Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma. Respiratory Physiology and Neurobiology, 2003, 137, 209-222.	0.7	99
28	S100A8/A9: A Janus-faced molecule in cancer therapy and tumorgenesis. European Journal of Pharmacology, 2009, 625, 73-83.	1.7	96
29	Noncanonical WNTâ€5A signaling regulates TGFâ€Î²â€induced extracellular matrix production by airway smooth muscle cells. FASEB Journal, 2013, 27, 1631-1643.	0.2	96
30	Ragweed Sensitization—induced Increase of Myosin Light Chain Kinase Content in Canine Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 1992, 7, 567-573.	1.4	93
31	IL-17 enhances IL-1β-mediated CXCL-8 release from human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1023-L1029.	1.3	90
32	Phophatidylinositol-3 Kinase/Mammalian Target of Rapamycin/p70S6KRegulates Contractile Protein Accumulation in Airway Myocyte Differentiation. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 266-275.	1.4	88
33	Human Airway Smooth Muscle Cells Express the High Affinity Receptor for IgE (FcεRI): A Critical Role of FcεRI in Human Airway Smooth Muscle Cell Function. Journal of Immunology, 2005, 175, 2613-2621.	0.4	87
34	Phenotype and Functional Plasticity of Airway Smooth Muscle: Role of Caveolae and Caveolins. Proceedings of the American Thoracic Society, 2008, 5, 80-88.	3.5	84
35	An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. American Journal of Respiratory and Critical Care Medicine, 2017, 195, e4-e19.	2.5	83
36	On the terminology for describing the length-force relationship and its changes in airway smooth muscle. Journal of Applied Physiology, 2004, 97, 2029-2034.	1.2	81

#	Article	IF	CITATIONS
37	Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. American Journal of Physiology - Cell Physiology, 2007, 293, C429-C439.	2.1	81
38	Mevalonate Cascade Regulation of Airway Mesenchymal Cell Autophagy and Apoptosis: A Dual Role for p53. PLoS ONE, 2011, 6, e16523.	1.1	81
39	Expression and Cytogenetic Localization of the Human SM22 Gene (TAGLN). Genomics, 1998, 49, 452-457.	1.3	78
40	Critical Role for STAT3 in IL-17A-Mediated CCL11 Expression in Human Airway Smooth Muscle Cells. Journal of Immunology, 2009, 182, 3357-3365.	0.4	77
41	Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L270-L286.	1.3	77
42	Airway Responsiveness in Two Inbred Strains of Mouse Disparate in IgE and IL-4 Production. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 156-163.	1.4	76
43	Rho kinase inhibitors: A novel therapeutical intervention in asthma?. European Journal of Pharmacology, 2008, 585, 398-406.	1.7	76
44	TH17 cytokines induce human airway smooth muscle cell migration. Journal of Allergy and Clinical Immunology, 2011, 127, 1046-1053.e2.	1.5	76
45	S100A8/A9: a mediator of severe asthma pathogenesis and morbidity?This article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba Canadian Journal of Physiology and Pharmacology, 2009, 87, 743-755.	0.7	75
46	Essential role of NF-κB and AP-1 transcription factors in TNF-α-induced TSLP expression in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L479-L485.	1.3	75
47	Muscarinic receptors on airway mesenchymal cells: Novel findings for an ancient target. Pulmonary Pharmacology and Therapeutics, 2013, 26, 145-155.	1.1	70
48	Airway mesenchymal cell death by mevalonate cascade inhibition: Integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1259-1271.	1.9	70
49	Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 452-467.	1.9	68
50	β-Catenin signaling is required for TGF-β ₁ -induced extracellular matrix production by airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L956-L965.	1.3	67
51	Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma. Biology Open, 2016, 5, 112-121.	0.6	67
52	Anti-Inflammatory Role of the cAMP Effectors Epac and PKA: Implications in Chronic Obstructive Pulmonary Disease. PLoS ONE, 2012, 7, e31574.	1.1	66
53	Response of Primary Human Airway Epithelial Cells to Influenza Infection: A Quantitative Proteomic Study. Journal of Proteome Research, 2012, 11, 4132-4146.	1.8	65
54	Airway Smooth Muscle Phenotype and Function: Interactions with Current Asthma Therapies. Current Drug Targets, 2006, 7, 525-540.	1.0	64

#	Article	IF	CITATIONS
55	IL-17R activation of human airway smooth muscle cells induces CXCL-8 production via a transcriptional-dependent mechanism. Clinical Immunology, 2005, 115, 268-276.	1.4	63
56	Epac as a novel effector of airway smooth muscle relaxation. Journal of Cellular and Molecular Medicine, 2011, 15, 1551-1563.	1.6	63
57	Rho-Kinase as a Drug Target for the Treatment of Airway Hyperresponsiveness in Asthma. Mini-Reviews in Medicinal Chemistry, 2006, 6, 339-348.	1.1	62
58	Airway smooth muscle inflammation is regulated by micro <scp>RNA</scp> â€145 in <scp>COPD</scp> . FEBS Letters, 2016, 590, 1324-1334.	1.3	62
59	Potential role for phenotypic modulation of bronchial smooth muscle ceils in chronic asthma. Canadian Journal of Physiology and Pharmacology, 1994, 72, 1448-1457.	0.7	61
60	Pro-inflammatory mechanisms of muscarinic receptor stimulation in airway smooth muscle. Respiratory Research, 2010, 11, 130.	1.4	61
61	Endogenous laminin is required for human airway smooth muscle cell maturation. Respiratory Research, 2006, 7, 117.	1.4	60
62	Muscarinic M3 receptor stimulation increases cigarette smoke-induced IL-8 secretion by human airway smooth muscle cells. European Respiratory Journal, 2009, 34, 1436-1443.	3.1	60
63	The Mevalonate Cascade as a Target to Suppress Extracellular Matrix Synthesis by Human Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 394-403.	1.4	60
64	Selective restoration of calcium coupling to muscarinic M3 receptors in contractile cultured airway myocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1091-L1100.	1.3	58
65	Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L420-L428.	1.3	58
66	Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L278-L286.	1.3	57
67	Cooperative regulation of GSK-3 by muscarinic and PDGF receptors is associated with airway myocyte proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1348-L1358.	1.3	57
68	Role of BNIP3 in TNF-induced cell death — TNF upregulates BNIP3 expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 546-560.	1.9	57
69	Prevalence and characteristics of progressive fibrosing interstitial lung disease in a prospective registry. European Respiratory Journal, 2022, 60, 2102571.	3.1	57
70	CC and CXC Chemokines Induce Airway Smooth Muscle Proliferation and Survival. Journal of Immunology, 2011, 186, 4156-4163.	0.4	56
71	Novel Recombinant Interleukin-13 Peptide-based Vaccine Reduces Airway Allergic Inflammatory Responses in Mice. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 439-445.	2.5	55
72	Neuronal chemorepellent Semaphorin 3E inhibits human airway smooth muscle cell proliferation and migration. Journal of Allergy and Clinical Immunology, 2014, 133, 560-567.e8.	1.5	55

#	Article	IF	CITATIONS
73	Caveolae facilitate muscarinic receptor-mediated intracellular Ca ²⁺ mobilization and contraction in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1406-L1418.	1.3	53
74	The Integrin-blocking Peptide RGDS Inhibits Airway Smooth Muscle Remodeling in a Guinea Pig Model of Allergic Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 556-565.	2.5	53
75	Caveolae and Caveolins in the Respiratory System. Current Molecular Medicine, 2008, 8, 741-753.	0.6	52
76	Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget, 2016, 7, 78516-78531.	0.8	52
77	Latrunculin B increases force fluctuation-induced relengthening of ACh-contracted, isotonically shortened canine tracheal smooth muscle. Journal of Applied Physiology, 2005, 98, 489-497.	1.2	51
78	β-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. Journal of Cell Science, 2010, 123, 3061-3070.	1.2	51
79	Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L765-L774.	1.3	50
80	TNF-α and IFN-γ inversely modulate expression of the IL-17E receptor in airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1238-L1246.	1.3	49
81	Mouse Hyal3 encodes a 45- to 56-kDa glycoprotein whose overexpression increases hyaluronidase 1 activity in cultured cells. Glycobiology, 2008, 18, 280-289.	1.3	49
82	Cyclooxygenase-2 and MicroRNA-155 Expression Are Elevated in Asthmatic Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 438-447.	1.4	49
83	A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells. Cell Death and Disease, 2015, 6, e1944-e1944.	2.7	48
84	Metabolic re-patterning in COPD airway smooth muscle cells. European Respiratory Journal, 2017, 50, 1700202.	3.1	48
85	Laminin-Binding Integrin α7 Is Required for Contractile Phenotype Expression by Human Airway Myocytes. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 668-680.	1.4	47
86	Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E89-E98.	1.8	47
87	Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts. Respiratory Research, 2011, 12, 113.	1.4	46
88	Direct evidence for functional smooth muscle myosin II in the 10S self-inhibited monomeric conformation in airway smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1421-1426.	3.3	46
89	Cross-Talk between Transforming Growth Factor–β ₁ and Muscarinic M ₂ Receptors Augments Airway Smooth Muscle Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 18-27.	1.4	46
90	Novel cytokine peptide-based vaccines: an interleukin-4 vaccine suppresses airway allergic responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 675-682.	2.7	45

#	Article	IF	CITATIONS
91	The Canadian Registry for Pulmonary Fibrosis: Design and Rationale of a National Pulmonary Fibrosis Registry. Canadian Respiratory Journal, 2016, 2016, 1-7.	0.8	45
92	Diabetes in pregnancy and lung health in offspring: developmental origins of respiratory disease. Paediatric Respiratory Reviews, 2017, 21, 19-26.	1.2	45
93	Quantitative densitometry of proteins stained with Coomassie Blue using a Hewlett Packard scanjet scanner and Scanplot software. Electrophoresis, 1997, 18, 67-71.	1.3	44
94	The association of caveolae, actin, and the dystrophin–glycoprotein complex: a role in smooth muscle phenotype and function?. Canadian Journal of Physiology and Pharmacology, 2005, 83, 877-891.	0.7	44
95	Expression of the dystrophin-glycoprotein complex is a marker for human airway smooth muscle phenotype maturation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L57-L68.	1.3	44
96	Models to study airway smooth muscle contraction inÂvivo, exÂvivo and inÂvitro: Implications in understanding asthma. Pulmonary Pharmacology and Therapeutics, 2013, 26, 24-36.	1.1	42
97	High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1354-L1366.	1.3	42
98	Fas cross-linking induces apoptosis in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L618-L624.	1.3	41
99	<i>De novo</i> synthesis of ßâ€catenin <i>via</i> Hâ€Ras and MEK regulates airway smooth muscle growth. FASEB Journal, 2010, 24, 757-768.	0.2	40
100	Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. Journal of Cellular and Molecular Medicine, 2011, 15, 2430-2442.	1.6	40
101	GSK-3/β-catenin signaling axis in airway smooth muscle: role in mitogenic signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1110-L1118.	1.3	39
102	Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2274-2286.	1.9	39
103	Muscarinic receptor stimulation augments TGF-β ₁ -induced contractile protein expression by airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L589-L597.	1.3	39
104	Autophagy, Apoptosis, the Unfolded Protein Response, and Lung Function in Idiopathic Pulmonary Fibrosis. Cells, 2021, 10, 1642.	1.8	39
105	Profiling of healthy and asthmatic airway smooth muscle cells following interleukin-1β treatment: a novel role for CCL20 in chronic mucus hypersecretion. European Respiratory Journal, 2018, 52, 1800310.	3.1	38
106	Pentraxin 3 (PTX3) Expression in Allergic Asthmatic Airways: Role in Airway Smooth Muscle Migration and Chemokine Production. PLoS ONE, 2012, 7, e34965.	1.1	38
107	Semaphorin 3E Deficiency Exacerbates Airway Inflammation, Hyperresponsiveness, and Remodeling in a Mouse Model of Allergic Asthma. Journal of Immunology, 2017, 198, 1805-1814.	0.4	37
108	Pentraxin 3 deletion aggravates allergic inflammation through a T H 17-dominant phenotype and enhanced CD4 T-cell survival. Journal of Allergy and Clinical Immunology, 2017, 139, 950-963.e9.	1.5	37

#	Article	IF	CITATIONS
109	IgE induces transcriptional regulation of thymic stromal lymphopoietin in human airway smooth muscle cells. Journal of Allergy and Clinical Immunology, 2011, 128, 892-896.e2.	1.5	36
110	TGF-β-Activated Kinase 1 (TAK1) Signaling Regulates TGF-β-Induced WNT-5A Expression in Airway Smooth Muscle Cells via Sp1 and β-Catenin. PLoS ONE, 2014, 9, e94801.	1.1	36
111	Mechanical Strain Inhibits Airway Smooth Muscle Gene Transcription via Protein Kinase C Signaling. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 54-61.	1.4	35
112	Influenza A Infection of Primary Human Airway Epithelial Cells Up-Regulates Proteins Related to Purine Metabolism and Ubiquitin-Related Signaling. Journal of Proteome Research, 2013, 12, 3139-3151.	1.8	35
113	Role of Rho kinase isoforms in murine allergic airway responses. European Respiratory Journal, 2011, 38, 841-850.	3.1	34
114	MicroRNA-200b regulates distal airway development by maintaining epithelial integrity. Scientific Reports, 2017, 7, 6382.	1.6	34
115	Expression of functional leukotriene B4 receptors on human airway smooth muscle cells. Journal of Allergy and Clinical Immunology, 2009, 124, 59-65.e3.	1.5	33
116	PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells. Respiratory Research, 2009, 10, 88.	1.4	33
117	Autocrine-regulated airway smooth muscle cell migration is dependent on IL-17–induced growth-related oncogenes. Journal of Allergy and Clinical Immunology, 2012, 130, 977-985.e6.	1.5	33
118	Sustained Suppression of IL-13 by a Vaccine Attenuates Airway Inflammation and Remodeling in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 540-549.	1.4	33
119	IL-9 Induces CCL11 Expression via STAT3 Signalling in Human Airway Smooth Muscle Cells. PLoS ONE, 2010, 5, e9178.	1.1	33
120	Overexpression of human Hsp27 inhibits serum-induced proliferation in airway smooth muscle myocytes and confers resistance to hydrogen peroxide cytotoxicity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1194-L1207.	1.3	32
121	Proinflammatory and Th2 Cytokines Regulate the High Affinity IgE Receptor (FcεRI) and IgE-Dependant Activation of Human Airway Smooth Muscle Cells. PLoS ONE, 2009, 4, e6153.	1.1	32
122	Impairment of mitochondrial respiratory chain activity in aortic endothelial cells induced by glycated low-density lipoprotein. Free Radical Biology and Medicine, 2010, 48, 781-790.	1.3	32
123	Structure and Transcription of the Human m3 Muscarinic Receptor Gene. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 298-305.	1.4	31
124	Cigarette smoke upâ€regulates <scp>PDE3</scp> and <scp>PDE4</scp> to decrease <scp>cAMP</scp> in airway cells. British Journal of Pharmacology, 2018, 175, 2988-3006.	2.7	31
125	Connexin 43 phosphorylation and degradation are required for adipogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1731-1744.	1.9	30
126	Semaphorin 3E Alleviates Hallmarks of House Dust Mite–Induced Allergic Airway Disease. American Journal of Pathology, 2017, 187, 1566-1576.	1.9	30

#	Article	IF	CITATIONS
127	Expression and Regulation of CCR1 by Airway Smooth Muscle Cells in Asthma. Journal of Immunology, 2008, 180, 1268-1275.	0.4	29
128	NMDA receptors mediate contractile responses in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1253-L1264.	1.3	28
129	Minimum important difference of the EQ-5D-5L and EQ-VAS in fibrotic interstitial lung disease. Thorax, 2021, 76, 37-43.	2.7	28
130	Expression and effects of cardiotrophin-1 (CT-1) in human airway smooth muscle cells. British Journal of Pharmacology, 2003, 140, 1237-1244.	2.7	27
131	Stimulation of cardiac cardiolipin biosynthesis by PPARα activation. Journal of Lipid Research, 2004, 45, 244-252.	2.0	27
132	p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1163-L1172.	1.3	27
133	Role for TAK1 in cigarette smoke-induced proinflammatory signaling and IL-8 release by human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L272-L278.	1.3	27
134	TNF up-regulates Pentraxin3 expression in human airway smooth muscle cells via JNK and ERK1/2 MAPK pathways. Allergy, Asthma and Clinical Immunology, 2015, 11, 37.	0.9	27
135	Immunomodulatory innate defence regulator (IDR) peptide alleviates airway inflammation and hyper-responsiveness. Thorax, 2018, 73, 908-917.	2.7	27
136	Concurrent physician-diagnosed asthma and chronic obstructive pulmonary disease: A population study of prevalence, incidence and mortality. PLoS ONE, 2017, 12, e0173830.	1.1	27
137	Extracellular matrix and airway smooth muscle interactions: a target for modulating airway wall remodelling and hyperresponsiveness?This article is one of a selection of papers published in the Special Issue on Recent Advances in Asthma Research Canadian Journal of Physiology and Pharmacology, 2007, 85, 666-671.	0.7	26
138	Protein kinase A and the exchange protein directly activated by cAMP (Epac) modulate phenotype plasticity in human airway smooth muscle. British Journal of Pharmacology, 2011, 164, 958-969.	2.7	25
139	Association of BMI and Change in Weight With Mortality in Patients With Fibrotic Interstitial Lung Disease. Chest, 2022, 161, 1320-1329.	0.4	25
140	CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells. Physiological Reports, 2016, 4, e12942.	0.7	24
141	Distribution of phenotypically disparate myocyte subpopulations in airway smooth muscle. Canadian Journal of Physiology and Pharmacology, 2005, 83, 104-116.	0.7	23
142	A-kinase-anchoring proteins coordinate inflammatory responses to cigarette smoke in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L766-L775.	1.3	23
143	A role for transient receptor potential ankyrin 1 cation channel (TRPA1) in airway hyper-responsiveness?. Canadian Journal of Physiology and Pharmacology, 2015, 93, 171-176.	0.7	23
144	Selective targeting of CREBâ€binding protein/βâ€catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. British Journal of Pharmacology, 2016, 173, 3327-3341.	2.7	23

#	Article	IF	CITATIONS
145	Early changes in airway smooth muscle hyperresponsiveness. Canadian Journal of Physiology and Pharmacology, 1994, 72, 1440-1447.	0.7	22
146	Milrinone attenuates thromboxane receptorâ€mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes. British Journal of Pharmacology, 2011, 163, 1223-1236.	2.7	22
147	Cooperative signaling by TGF-β1 and WNT-11 drives sm-α-actin expression in smooth muscle via Rho kinase-actin-MRTF-A signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L529-L537.	1.3	22
148	Airway smooth muscle cell proliferation: characterization of subpopulations by sensitivity to heparin inhibition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L17-L25.	1.3	21
149	ICOS ligand expression is essential for allergic airway hyperresponsiveness. International Immunology, 2011, 23, 239-249.	1.8	21
150	Performance Characteristics of Spirometry With Negative Bronchodilator Response and Methacholine Challenge Testing and Implications for Asthma Diagnosis. Chest, 2020, 158, 479-490.	0.4	21
151	Role of Dystrophin in Airway Smooth Muscle Phenotype, Contraction and Lung Function. PLoS ONE, 2014, 9, e102737.	1.1	21
152	The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide. Respiratory Research, 2018, 19, 85.	1.4	20
153	Characterization of the interaction of barley α-amylase II with an endogenous α-amylase inhibitor from barley kernels. BBA - Proteins and Proteomics, 1986, 873, 92-101.	2.1	19
154	Actin Dynamics. Chest, 2003, 123, 392S-398S.	0.4	19
155	Effects of oxidized and glycated low-density lipoproteins on transcription and secretion of plasminogen activator inhibitor-1 in vascular endothelial cells. Cardiovascular Pathology, 2006, 15, 3-10.	0.7	19
156	Glycogen synthase kinase-3 regulates cigarette smoke extract- and IL-1β-induced cytokine secretion by airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L910-L919.	1.3	19
157	γ-Tocotrienol reduces human airway smooth muscle cell proliferation and migration. Pulmonary Pharmacology and Therapeutics, 2015, 32, 45-52.	1.1	19
158	Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Scientific Reports, 2016, 6, 30676.	1.6	19
159	Expression and regulation of <scp>CCL</scp> 15 by human airway smooth muscle cells. Clinical and Experimental Allergy, 2012, 42, 85-94.	1.4	18
160	Chronic expression of Ski induces apoptosis and represses autophagy in cardiac myofibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1261-1268.	1.9	18
161	A cluster-based analysis evaluating the impact of comorbidities in fibrotic interstitial lung disease. Respiratory Research, 2020, 21, 322.	1.4	18
162	The importance of reporting house dust mite endotoxin abundance: impact on the lung transcriptome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1229-L1236.	1.3	18

#	Article	IF	CITATIONS
163	Downregulation of semaphorin 3E promotes hallmarks of experimental chronic allergic asthma. Oncotarget, 2017, 8, 98953-98963.	0.8	18
164	The laminin β1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma. Respiratory Research, 2010, 11, 170.	1.4	17
165	Laminin drives survival signals to promote a contractile smooth muscle phenotype and airway hyperreactivity. FASEB Journal, 2013, 27, 3991-4003.	0.2	17
166	Platinum (IV) coiled coil nanotubes selectively kill human glioblastoma cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 913-925.	1.7	17
167	Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L467-L480.	1.3	17
168	Expression of semaphorin 3E is suppressed in severe asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 1176-1179.	1.5	17
169	<scp>l</scp> -Thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L301-L306.	1.3	16
170	Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma. Frontiers in Physiology, 2016, 7, 680.	1.3	16
171	Travel Distance to Subspecialty Clinic and Outcomes in Patients with Fibrotic Interstitial Lung Disease. Annals of the American Thoracic Society, 2022, 19, 20-27.	1.5	16
172	HSP20 phosphorylation and airway smooth muscle relaxation. Cell Health and Cytoskeleton, 2009, Volume 1, 27-42.	0.7	15
173	Motility, Survival, and Proliferation. , 2012, 2, 255-281.		15
174	Epitheliumâ€dependent modulation of responsiveness of airways from caveolinâ€1 knockout mice is mediated through cyclooxygenaseâ€2 and 5â€lipoxygenase. British Journal of Pharmacology, 2012, 167, 548-560.	2.7	15
175	Human bronchial and parenchymal fibroblasts display differences in basal inflammatory phenotype and response to ILâ€17A. Clinical and Experimental Allergy, 2016, 46, 945-956.	1.4	15
176	Prophylactic benefits of systemically delivered simvastatin treatment in a house dust mite challenged murine model of allergic asthma. British Journal of Pharmacology, 2018, 175, 1004-1016.	2.7	15
177	CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling. Journal of Allergy and Clinical Immunology, 2017, 139, 82-92.e5.	1.5	14
178	Costs of Workplace Productivity Loss in Patients With Fibrotic Interstitial Lung Disease. Chest, 2019, 156, 887-895.	0.4	14
179	Airway smooth muscle contractile, regulatory and cytoskeletal protein expression in health and disease. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 415-424.	0.7	13
180	Src mediates cytokine-stimulated gene expression in airway myocytes through ERK MAPK. Cell Communication and Signaling, 2011, 9, 14.	2.7	13

#	Article	IF	CITATIONS
181	Impact of Adiponectin Overexpression on Allergic Airways Responses in Mice. Journal of Allergy, 2013, 2013, 1-13.	0.7	13
182	Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction. European Respiratory Journal, 2021, 57, 2000839.	3.1	13
183	The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Scientific Reports, 2016, 6, 26928.	1.6	12
184	Latrophilin receptors: novel bronchodilator targets in asthma. Thorax, 2017, 72, 74-82.	2.7	12
185	Oxidized phosphatidylcholines induce multiple functional defects in airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L703-L717.	1.3	12
186	Inhalational exposures in patients with fibrotic interstitial lung disease: Presentation, pulmonary function and survival in the <scp>Canadian Registry</scp> for <scp>Pulmonary Fibrosis</scp> . Respirology, 2022, 27, 635-644.	1.3	12
187	Characterization of molecular determinants of smooth muscle cell heterogeneity. Canadian Journal of Physiology and Pharmacology, 1997, 75, 917-929.	0.7	11
188	Simultaneous quantification of simvastatin and simvastatin hydroxy acid in blood serum at physiological pH by ultrahigh performance liquid chromatography–tandem mass spectrometry (UHPLC/MS/MS). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 947-948, 145-150.	1.2	10
189	β-Catenin Directs Nuclear Factor-κB p65 Output via CREB-Binding Protein/p300 in Human Airway Smooth Muscle. Frontiers in Immunology, 2017, 8, 1086.	2.2	10
190	The importance of valine 114 in ligand binding in β ₂ â€adrenergic receptor. Protein Science, 2010, 19, 85-93.	3.1	9
191	Characterization of the dystrophin–glycoprotein complex in airway smooth muscle: role of δ-sarcoglycan in airway responsiveness. Canadian Journal of Physiology and Pharmacology, 2015, 93, 195-202.	0.7	9
192	Vitamin D3 Attenuates Viral-Induced Inflammation and Fibrotic Responses in Bronchial Smooth Muscle Cells. Frontiers in Immunology, 2021, 12, 715848.	2.2	9
193	Differential regulation of cytokine and chemokine expression by MK2 and MK3 in airway smooth muscle cells. Pulmonary Pharmacology and Therapeutics, 2018, 53, 12-19.	1.1	8
194	Update in Adult Asthma 2020. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 395-402.	2.5	8
195	Mitochondrial Transfer Regulates Bioenergetics in Healthy and Chronic Obstructive Pulmonary Disease Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 471-481.	1.4	8
196	Mechanisms of aortic smooth muscle hyporeactivity after prolonged hypoxia in rats. Journal of Applied Physiology, 2002, 92, 2625-2632.	1.2	7
197	Glucocorticoids regulate pentraxin-3 expression in human airway smooth muscle cells. PLoS ONE, 2019, 14, e0220772.	1.1	7
198	Metabolic Adaptation of Airway Smooth Muscle Cells to an SPHK2 Substrate Precedes Cytostasis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 35-42.	1.4	7

#	Article	IF	CITATIONS
199	Cathelicidin and Calprotectin Are Disparately Altered in Murine Models of Inflammatory Arthritis and Airway Inflammation. Frontiers in Immunology, 2020, 11, 1932.	2.2	7
200	Role of airway smooth muscle in asthma: Possible relation to the neuroendocrine system. The Anatomical Record, 1993, 236, 152-168.	2.3	6
201	Delayed rectifier K ⁺ current of dog bronchial myocytes: effect of pollen sensitization and PKC activation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L336-L347.	1.3	6
202	The profibrotic and senescence phenotype of old lung fibroblasts is reversed or ameliorated by genetic and pharmacological manipulation of Slc7a11 expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L449-L461.	1.3	6
203	PlexinD1 Deficiency in Lung Interstitial Macrophages Exacerbates House Dust Mite–Induced Allergic Asthma. Journal of Immunology, 2022, 208, 1272-1279.	0.4	6
204	Growing up and advancing in airway smooth muscle research. Trends in Pharmacological Sciences, 2002, 23, 450-451.	4.0	5
205	Effects of Extracellular Matrix and Integrin Interactions on Airway Smooth Muscle Phenotype and Function: It Takes Two to Tango!. Current Respiratory Medicine Reviews, 2007, 3, 193-205.	0.1	5
206	Can circular RNAs be used as prenatal biomarkers for congenital diaphragmatic hernia?. European Respiratory Journal, 2020, 55, 1900514.	3.1	5
207	Update in Asthma 2019. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 184-192.	2.5	5
208	Costs of Workplace Productivity Loss in Patients with Connective Tissue Disease–associated Interstitial Lung Disease. Annals of the American Thoracic Society, 2020, 17, 1077-1084.	1.5	5
209	Integrating Proteomes for Lung Tissues and Lavage Reveals Pathways That Link Responses in Allergen-Challenged Mice. ACS Omega, 2021, 6, 1171-1189.	1.6	5
210	Validation and minimum important difference of the UCSD Shortness of Breath Questionnaire in fibrotic interstitial lung disease. Respiratory Research, 2021, 22, 202.	1.4	5
211	Impact of Concomitant Medication Burden on Tolerability of Disease-targeted Therapy and Survival in Interstitial Lung Disease. Annals of the American Thoracic Society, 2022, 19, 962-970.	1.5	5
212	Oxidation specific epitopes in asthma: New possibilities for treatment. International Journal of Biochemistry and Cell Biology, 2020, 129, 105864.	1.2	4
213	Treatment Initiation in Patients with Interstitial Lung Disease in Canada. Annals of the American Thoracic Society, 2021, 18, 1661-1668.	1.5	4
214	Disrupting Tryptophan in the Central Hydrophobic Region Selectively Mitigates Immunomodulatory Activities of the Innate Defence Regulator Peptide IDR-1002. Journal of Medicinal Chemistry, 2021, 64, 6696-6705.	2.9	4
215	Isotonic Shortening Parameters but not Isometric Force Development are Altered in Ragweed Pollen Sensitized Canine Bronchial Smooth Muscle. Advances in Experimental Medicine and Biology, 1991, 304, 445-453.	0.8	4
216	Malignancy Risk Associated With Mycophenolate Mofetil or Azathioprine in Patients With Fibrotic Interstitial Lung Disease. Chest, 2022, 161, 1594-1597.	0.4	4

#	Article	IF	CITATIONS
217	Clinical relevance of rheumatoid factor and antiâ€citrullinated peptides in fibrotic interstitial lung disease. Respirology, 0, , .	1.3	4
218	Sex Dimorphism of Allergen-Induced Secreted Proteins in Murine and Human Lungs. Frontiers in Immunology, 0, 13, .	2.2	4
219	Airways smooth muscle: The next generation. Pulmonary Pharmacology and Therapeutics, 2009, 22, 351-352.	1.1	3
220	Genetic Deletion of Semaphorin 3E Aggravates Airway Contraction in a Mouse Model of Allergic Asthma. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 601-603.	1.4	3
221	Characterization of immune responses and the lung transcriptome in a murine model of IL-33 challenge. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165950.	1.8	3
222	Î ³ -Tocotrienol Inhibits TGF-Î ² 1-Induced Contractile Phenotype Expression of Human Airway Smooth Muscle Cells. Yonago Acta Medica, 2017, 60, 16-23.	0.3	3
223	Effect of continued antifibrotic therapy after forced vital capacity decline in patients with idiopathic pulmonary fibrosis; a real world multicenter cohort study. Respiratory Medicine, 2022, 191, 106722.	1.3	3
224	Potential for airway smooth muscle as therapeutic target is reflected in the breadth of expertise of next generation scientists. Pulmonary Pharmacology and Therapeutics, 2013, 26, 1-2.	1.1	2
225	Shot Down Inflamed: Airway Smooth Muscle Bronchodilator Insensitivity in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 379-381.	1.4	2
226	Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle. Frontiers in Cell and Developmental Biology, 2020, 8, 165.	1.8	2
227	Prescribing Patterns and Tolerability of Mycophenolate and Azathioprine in Patients with Nonidiopathic Pulmonary Fibrosis Fibrotic Interstitial Lung Disease. Annals of the American Thoracic Society, 2022, 19, 863-867.	1.5	2
228	Update in Asthma 2021. American Journal of Respiratory and Critical Care Medicine, 2022, , .	2.5	2
229	Airway Smooth Muscle Phenotypic and Functional Plasticity. , 0, , 71-88.		1
230	MiR-146a Reduces Cyclooxygenase-2 Expression In Human Airway Smooth Muscle Cells. , 2012, , .		1
231	S100A8/A9 as a Pro-inflammatory Cytokine in Obstructive Airway Disease Via the Multi-Ligand Receptor, RAGE. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2009, 8, 306-317.	1.1	1
232	Control of the Mesenchymal-Derived Cell Phenotype by Ski and Meox2: A Putative Mechanism for Postdevelopmental Phenoconversion. , 2011, , 29-42.		0
233	Honoring Newman L. Stephens: a legacy of science and success. Canadian Journal of Physiology and Pharmacology, 2015, 93, v-vi.	0.7	0
234	The Therapeutic Effect of Extracellular Vesicles on Asthma in Pre-Clinical Models: A Systematic Review Protocol. Journal of Respiration, 2021, 1, 84-95.	0.4	0

#	Article	IF	CITATIONS
235	Epac as a novel relaxant factor in airway smooth muscle. FASEB Journal, 2010, 24, .	0.2	Ο
236	Transfatâ€mediated apoptosis is regulated by autophagy in primary cardiac myofibroblasts. FASEB Journal, 2012, 26, .	0.2	0
237	Function and molecular regulation of WNTâ€5A expression by TGFâ€Î². FASEB Journal, 2013, 27, 729.6.	0.2	0
238	Airway Smooth Muscle Function in Asthma. , 2014, , 730-738.		0
239	LSC Abstract – High mobility group box 1 modulates lung innate immunity by promoting wound healing and cytokine release in human bronchial epithelial cells. , 2015, , .		0
240	Regulation of actin dynamics by WNT-5A: Implications for human airway smooth muscle contraction. , 2016, , .		0
241	Proteomic profiling to define synergistic responses mediated by IL-17 and TNFa in the lungs. , 2018, , .		0
242	Activity of an innate defence regulator peptide to alleviate airway inflammation is mitigated by disruption of its central hydrophobic region. , 2018, , .		0
243	Regulation of mitochondrial transfer between airway smooth muscle cells: relevance to COPD. , 2019, , .		0