
Mario Pende

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159230/publications.pdf Version: 2024-02-01

MADIO DENDE

#	Article	lF	CITATIONS
1	Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling. Nature Communications, 2021, 12, 3660.	12.8	13
2	mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division. Nature Communications, 2020, 11, 3200.	12.8	20
3	A Yap-Myc-Sox2-p53 Regulatory Network Dictates Metabolic Homeostasis and Differentiation in Kras-Driven Pancreatic Ductal Adenocarcinomas. Developmental Cell, 2019, 51, 113-128.e9.	7.0	50
4	YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. Developmental Cell, 2019, 49, 425-443.e9.	7.0	78
5	The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nature Communications, 2019, 10, 1566.	12.8	72
6	Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperoneâ€responsive myopathy. EMBO Journal, 2019, 38, .	7.8	34
7	Colgi mechanics controls lipid metabolism. Nature Cell Biology, 2019, 21, 301-302.	10.3	0
8	mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight, 2018, 3, .	5.0	142
9	<scp>ZRF</scp> 1 is a novel S6 kinase substrate that drives the senescence programme. EMBO Journal, 2017, 36, 736-750.	7.8	33
10	The centrosomal OFD1 protein interacts with the translation machinery and regulates the synthesis of specific targets. Scientific Reports, 2017, 7, 1224.	3.3	36
11	Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription. Journal of Clinical Investigation, 2017, 127, 1873-1888.	8.2	58
12	mTOR Pathway Activation Drives Lung-Cell Senescence and Emphysema in Chronic Obstructive Pulmonary Disease. , 2017, , .		1
13	S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy. Cell Reports, 2016, 17, 501-513.	6.4	89
14	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
15	Selective Tuberous Sclerosis Complex 1 Gene Deletion in Smooth Muscle Activates Mammalian Target of Rapamycin Signaling and Induces Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 352-367.	2.9	19
16	Depdc5 knockout rat: A novel model of mTORopathy. Neurobiology of Disease, 2016, 89, 180-189.	4.4	78
17	YAP enters the mTOR pathway to promote tuberous sclerosis complex. Molecular and Cellular Oncology, 2015, 2, e998100.	0.7	6
18	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283.	12.8	47

MARIO PENDE

#	Article	IF	CITATIONS
19	New insights into the pathophysiology of the tuberous sclerosis complex: Crosstalk of mTOR- and hippo-YAP pathways in cell growth. Rare Diseases (Austin, Tex), 2015, 3, e1016701.	1.8	4
20	mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 2015, 517, 497-500.	27.8	257
21	S6K1 controls pancreatic β cell size independently of intrauterine growth restriction. Journal of Clinical Investigation, 2015, 125, 2736-2747.	8.2	23
22	SelectiveTSC1deletion in smooth muscle activates mTOR signaling and induces pulmonary hypertension. , 2015, , .		0
23	Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene, 2014, 33, 474-483.	5.9	240
24	Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. Journal of Experimental Medicine, 2014, 211, 2249-2263.	8.5	170
25	Ribosomal Protein S6 and S6 Kinases. , 2014, , 345-362.		0
26	Regulation of YAP by mTOR and autophagy reveals a therapeutic target of Tuberous Sclerosis Complex. Journal of Cell Biology, 2014, 207, 20710IA181.	5.2	0
27	AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nature Medicine, 2013, 19, 1288-1296.	30.7	187
28	Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2103-2114.	3.8	50
29	The role of the mTOR pathway during liver regeneration and tumorigenesis. Annales D'Endocrinologie, 2013, 74, 121-122.	1.4	9
30	Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Molecular Medicine, 2013, 5, 870-890.	6.9	96
31	Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology, 2013, 14, 303-323.	3.9	274
32	Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochemical Society Transactions, 2013, 41, 917-922.	3.4	39
33	The Combined Deletion of S6K1 and Akt2 Deteriorates Glycemic Control in a High-Fat Diet. Molecular and Cellular Biology, 2012, 32, 4001-4011.	2.3	24
34	Cell Autonomous Lipin 1 Function Is Essential for Development and Maintenance of White and Brown Adipose Tissue. Molecular and Cellular Biology, 2012, 32, 4794-4810.	2.3	40
35	The Type 1 Insulin-Like Growth Factor Receptor (IGF-IR) Pathway Is Mandatory for the Follistatin-Induced Skeletal Muscle Hypertrophy. Endocrinology, 2012, 153, 241-253.	2.8	49
36	PPARÎ ³ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3, 672.	12.8	127

Mario Pende

#	Article	IF	CITATIONS
37	Genetic ablation of S6-kinase does not prevent processing of SREBP1. Advances in Enzyme Regulation, 2011, 51, 280-290.	2.6	8
38	Regulation of the SREBP transcription factors by mTORC1. Biochemical Society Transactions, 2011, 39, 495-499.	3.4	71
39	S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy. Journal of Clinical Investigation, 2011, 121, 2821-2832.	8.2	68
40	Rictor is a novel target of p70 S6 kinase-1. Oncogene, 2010, 29, 1003-1016.	5.9	137
41	Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene, 2010, 29, 1641-1652.	5.9	120
42	Coordinated maintenance of muscle cell size control by AMPâ€activated protein kinase. FASEB Journal, 2010, 24, 3555-3561.	0.5	88
43	TPL-2–Mediated Activation of MAPK Downstream of TLR4 Signaling Is Coupled to Arginine Availability. Science Signaling, 2010, 3, ra61.	3.6	40
44	mTOR/S6 Kinase Pathway Contributes to Astrocyte Survival during Ischemia. Journal of Biological Chemistry, 2009, 284, 22067-22078.	3.4	78
45	Important role for AMPKαl in limiting skeletal muscle cell hypertrophy. FASEB Journal, 2009, 23, 2264-2273.	0.5	106
46	Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. Journal of Cell Biology, 2009, 187, 859-874.	5.2	320
47	Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. Journal of Experimental Medicine, 2009, 206, i33-i33.	8.5	0
48	Akt activation protects pancreatic beta cells from AMPK-mediated death through stimulation of mTOR. Biochemical Pharmacology, 2008, 75, 1981-1993.	4.4	36
49	Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation. Journal of Clinical Investigation, 2008, 118, 3629-3638.	8.2	60
50	S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. American Journal of Physiology - Cell Physiology, 2007, 293, C712-C722.	4.6	86
51	S6 Kinase Deletion Suppresses Muscle Growth Adaptations to Nutrient Availability by Activating AMP Kinase. Cell Metabolism, 2007, 5, 476-487.	16.2	163
52	The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO Journal, 2006, 25, 2781-2791.	7.8	459
53	Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7315-7320.	7.1	125
54	mTOR, Akt, S6 kinases and the control of skeletal muscle growth. Bulletin Du Cancer, 2006, 93, E39-43.	1.6	15

Mario Pende

#	Article	IF	CITATIONS
55	Atrophy of S6K1â^'/â^' skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nature Cell Biology, 2005, 7, 286-294.	10.3	336
56	Roles of the Lactogens and Somatogens in Perinatal and Postnatal Metabolism and Growth: Studies of a Novel Mouse Model Combining Lactogen Resistance and Growth Hormone Deficiency. Endocrinology, 2005, 146, 103-112.	2.8	54
57	Deletion of Ribosomal S6 Kinases Does Not Attenuate Pathological, Physiological, or Insulin-Like Growth Factor 1 Receptor-Phosphoinositide 3-Kinase-Induced Cardiac Hypertrophy. Molecular and Cellular Biology, 2004, 24, 6231-6240.	2.3	111
58	<i>S6K1</i> ^{â^'/â^'} / <i>S6K2</i> ^{â^'/â^'} Mice Exhibit Perinatal Lethality and Rapamycin-Sensitive 5â€2-Terminal Oligopyrimidine mRNA Translation and Reveal a Mitogen-Activated Protein Kinase-Dependent S6 Kinase Pathway. Molecular and Cellular Biology, 2004, 24, 3112-3124.	2.3	680
59	Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. Journal of Clinical Investigation, 2004, 113, 635-645.	8.2	201
60	Insulin Regulation of Insulin-like Growth Factor-binding Protein-1 Gene Expression Is Dependent on the Mammalian Target of Rapamycin, but Independent of Ribosomal S6 Kinase Activity. Journal of Biological Chemistry, 2002, 277, 9889-9895.	3.4	40
61	Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature, 2000, 408, 994-997.	27.8	422
62	Neurotransmitter- and Growth Factor-Induced cAMP Response Element Binding Protein Phosphorylation in Glial Cell Progenitors: Role of Calcium Ions, Protein Kinase C, and Mitogen-Activated Protein Kinase/Ribosomal S6 Kinase Pathway. Journal of Neuroscience, 1997, 17, 1291-1301.	3.6	179
63	Cycloheximide inhibits kainic acid-induced GAP-43 mRNA in dentate granule cells in rats. NeuroReport, 1996, 7, 2539-2542.	1.2	8
64	Expression and regulation of kainate and AMPA receptors in uncommitted and committed neural progenitors. Neurochemical Research, 1995, 20, 549-560.	3.3	33
65	Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3215-3219.	7.1	106
66	Expression of GAP-43 in the Granule Cells of Rat Hippocampus After Seizure-induced Sprouting of Mossy Fibres: In Situ Hybridization and Immunocytochemical Studies. European Journal of Neuroscience, 1994, 6, 509-515.	2.6	65
67	Does GFAP mRNA and mitochondrial benzodiazepine receptor binding detect serotonergic neuronal degeneration in rat?. Brain Research Bulletin, 1994, 34, 389-394.	3.0	21
68	Release of endogenous glutamic and aspartic acids from cerebrocortex synaptosomes and its modulation through activation of a Î ³ -aminobutyric acidB (GABAB) receptor subtype. Brain Research, 1993, 604, 325-330.	2.2	57
69	Subclassification of releaseâ€regulating α ₂ â€autoreceptors in human brain cortex. British Journal of Pharmacology, 1992, 107, 1146-1151.	5.4	46
70	GM1 ganglioside treatment promotes recovery of electrically-stimulated [3H]dopamine release in striatal slices from rats lesioned with kainic acid. Neuroscience Letters, 1992, 136, 127-130.	2.1	3
71	?-Aminobutyric Acid and Glycine Modulate Each Other's Release Through Heterocarriers Sited on the Releasing Axon Terminals of Rat CNS. Journal of Neurochemistry, 1992, 59, 1481-1489.	3.9	33