
Sihai Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6158118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In rice splice variants that restore the reading frame after frameshifting indel introduction are common, often induced by the indels and sometimes lead to organism-level rescue. PLoS Genetics, 2022, 18, e1010071.	3.5	2
2	Mitotic gene conversion can be as important as meiotic conversion in driving genetic variability in plants and other species without early germline segregation. PLoS Biology, 2021, 19, e3001164.	5.6	5
3	Ancient rapid functional differentiation and fixation of the duplicated members in rice <i>Dof</i> genes after whole genome duplication. Plant Journal, 2021, 108, 1365-1381.	5.7	5
4	Somatic mutation analysis in Salix suchowensis reveals early segregated cell lineages. Molecular Biology and Evolution, 2021, 38, 5292-5308.	8.9	10
5	CRISPRâ€based assessment of genomic structure in the conserved SQUAMOSA promoterâ€bindingâ€like gene clusters in rice. Plant Journal, 2020, 104, 1301-1314.	5.7	14
6	Repeat-induced point mutation in Neurospora crassa causes the highest known mutation rate and mutational burden of any cellular life. Genome Biology, 2020, 21, 142.	8.8	24
7	Pleiotropic changes revealed by in situ recovery of the semi-dwarf gene sd1 in rice. Journal of Plant Physiology, 2020, 248, 153141.	3.5	11
8	Large-scale identification and functional analysis of <i>NLR</i> genes in blast resistance in the Tetep rice genome sequence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18479-18487.	7.1	63
9	CRISPR-Based Assessment of Gene Specialization in the Gibberellin Metabolic Pathway in Rice. Plant Physiology, 2019, 180, 2091-2105.	4.8	24
10	Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. Plant Molecular Biology, 2019, 100, 467-479.	3.9	18
11	The architecture of intra-organism mutation rate variation in plants. PLoS Biology, 2019, 17, e3000191.	5.6	89
12	Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants, 2019, 5, 18-25.	9.3	163
13	Highâ€resolution insight into recombination events at the <i><scp>SD</scp>1</i> locus in rice. Plant Journal, 2019, 97, 683-692.	5.7	8
14	Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias. Nature Ecology and Evolution, 2018, 2, 164-173.	7.8	65
15	Phylogenetic and CRISPR/Cas9 Studies in Deciphering the Evolutionary Trajectory and Phenotypic Impacts of Rice ERECTA Genes. Frontiers in Plant Science, 2018, 9, 473.	3.6	33
16	Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7559-E7567.	7.1	50
17	Direct Determination of the Mutation Rate in the Bumblebee Reveals Evidence for Weak Recombination-Associated Mutation and an Approximate Rate Constancy in Insects. Molecular Biology and Evolution, 2017, 34, 119-130.	8.9	93
18	Selective sweep with significant positive selection serves as the driving force for the differentiation of japonica and indica rice cultivars. BMC Genomics, 2017, 18, 307.	2.8	25

Sihai Yang

#	Article	IF	CITATIONS
19	Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 1792.	3.6	4
20	Dissimilar manifestation of heterosis under nutrient-deficient and nutrient-sufficient condition. Plant Physiology, 2016, 172, pp.00579.2016.	4.8	4
21	Mutation rate analysis via parent–progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161016.	2.6	64
22	Mutation rate analysis via parent–progeny sequencing of the perennial peach. II. No evidence for recombination-associated mutation. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161785.	2.6	17
23	Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice. Plant Molecular Biology, 2016, 90, 95-105.	3.9	19
24	High genetic abundance of Rpi-blb2/Mi-1.2/Cami gene family in Solanaceae. BMC Evolutionary Biology, 2015, 15, 215.	3.2	1
25	A genomeâ€wide survey reveals abundant rice blast <i>R</i> Âgenes in resistant cultivars. Plant Journal, 2015, 84, 20-28.	5.7	42
26	Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Molecular Genetics and Genomics, 2015, 290, 2173-2186.	2.1	3
27	GC-Content of Synonymous Codons Profoundly Influences Amino Acid Usage. G3: Genes, Genomes, Genetics, 2015, 5, 2027-2036.	1.8	59
28	Relationship between amino acid usage and amino acid evolution in primates. Gene, 2015, 557, 182-187.	2.2	12
29	Parent–progeny sequencing indicates higher mutation rates in heterozygotes. Nature, 2015, 523, 463-467.	27.8	157
30	Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. Genome Biology, 2015, 16, 15.	8.8	67
31	Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genetics, 2015, 16, 48.	2.7	84
32	Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F ₂ plants. New Phytologist, 2015, 206, 1491-1502.	7.3	86
33	Allele-mining of rice blast resistance genes at AC134922 locus. Biochemical and Biophysical Research Communications, 2014, 446, 1085-1090.	2.1	14
34	Rapidly evolving <i>R</i> genes in diverse grass species confer resistance to rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18572-18577.	7.1	120
35	Great majority of recombination events in <i>Arabidopsis</i> are gene conversion events. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20992-20997.	7.1	69
36	Tracing the origin and evolutionary history of plant nucleotideâ€binding site–leucineâ€rich repeat (<i>NBSâ€LRR</i>) genes. New Phytologist, 2012, 193, 1049-1063.	7.3	198

Sihai Yang

#	Article	IF	CITATIONS
37	Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biology, 2010, 10, 242.	3.6	42
38	Genetic variation of NBS-LRR class resistance genes in rice lines. Theoretical and Applied Genetics, 2008, 116, 165-177.	3.6	67
39	Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics and Genomics, 2008, 280, 187-198.	2.1	405
40	Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature, 2008, 455, 105-108.	27.8	226
41	A molecular isolation mechanism associated with high intra-specific diversity in rice. Gene, 2007, 394, 87-95.	2.2	12
42	Highly asymmetric rice genomes. BMC Genomics, 2007, 8, 154.	2.8	38
43	Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Molecular Biology, 2006, 62, 181-193.	3.9	105