List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6156988/publications.pdf Version: 2024-02-01

YONCYINLL

#	Article	IF	CITATIONS
1	Well-Defined N-Heterocyclic Carbene Based Ruthenium Catalysts for Direct Amide Synthesis from Alcohols and Amines. Organometallics, 2010, 29, 1374-1378.	2.3	166
2	Controlling Supramolecular Chirality of Two-Component Hydrogels by <i>J</i> - and <i>H</i> -Aggregation of Building Blocks. Journal of the American Chemical Society, 2018, 140, 6467-6473.	13.7	165
3	Organocatalytic Asymmetric Tandem Michaelâ^'Henry Reactions: A Highly Stereoselective Synthesis of Multifunctionalized Cyclohexanes with Two Quaternary Stereocenters. Organic Letters, 2008, 10, 2437-2440.	4.6	153
4	Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory. Journal of the American Chemical Society, 2017, 139, 436-441.	13.7	142
5	Isolation of a Bis(oxazolâ€2â€ylidene)–Phenylborylene Adduct and its Reactivity as a Boronâ€Centered Nucleophile. Angewandte Chemie - International Edition, 2014, 53, 9280-9283.	13.8	129
6	Palladium(ii)-catalyzed asymmetric hydrophosphination of enones: efficient access to chiral tertiary phosphines. Chemical Communications, 2010, 46, 6950.	4.1	128
7	A Rationally Designed Nitrogen-Rich Metal-Organic Framework and Its Exceptionally High CO2 and H2 Uptake Capability. Scientific Reports, 2013, 3, 1149.	3.3	122
8	A surfactant-thermal method to prepare four new three-dimensional heterometal–organic frameworks. Dalton Transactions, 2013, 42, 11367.	3.3	119
9	Asymmetric Synthesis of <i>P</i> -Stereogenic Diarylphosphinites by Palladium-Catalyzed Enantioselective Addition of Diarylphosphines to Benzoquinones. Journal of the American Chemical Society, 2014, 136, 4865-4868.	13.7	119
10	Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20, 1113-1120.	27.5	119
11	Direct Synthesis of Chiral Tertiary Diphosphines <i>via</i> Pd(II)-Catalyzed Asymmetric Hydrophosphination of Dienones. Organic Letters, 2011, 13, 5862-5865.	4.6	116
12	Highly Effective Carbon Fixation via Catalytic Conversion of CO ₂ by an Acylamide-Containing Metal–Organic Framework. Chemistry of Materials, 2017, 29, 9256-9261.	6.7	116
13	Isolation of 1,2,4,3-Triazaborol-3-yl-metal (Li, Mg, Al, Au, Zn, Sb, Bi) Derivatives and Reactivity toward CO and Isonitriles. Journal of the American Chemical Society, 2016, 138, 6650-6661.	13.7	114
14	A large pyrene-fused N-heteroacene: fifteen aromatic six-membered rings annulated in one row. Chemical Communications, 2017, 53, 7772-7775.	4.1	114
15	Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal Ions. Journal of the American Chemical Society, 2018, 140, 16275-16283.	13.7	110
16	Significant gas uptake enhancement by post-exchange of zinc(ii) with copper(ii) within a metal–organic framework. Chemical Communications, 2012, 48, 10286.	4.1	107
17	Intermolecular Mizoroki–Heck Reaction of Aliphatic Olefins with High Selectivity for Substitution at the Internal Position. Angewandte Chemie - International Edition, 2012, 51, 5915-5919.	13.8	104
18	Palladacycle-Catalyzed Asymmetric Hydrophosphination of Enones for Synthesis of C*- and P*-Chiral Tertiary Phosphines. Inorganic Chemistry, 2012, 51, 2533-2540.	4.0	98

#	Article	IF	CITATIONS
19	Ultrastable Thorium Metal–Organic Frameworks for Efficient Iodine Adsorption. Inorganic Chemistry, 2020, 59, 4435-4442.	4.0	98
20	4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. Journal of Materials Chemistry C, 2015, 3, 9191-9196.	5.5	93
21	Switching charge-transfer characteristics from p-type to n-type through molecular "doping― (co-crystallization). Chemical Science, 2016, 7, 3851-3856.	7.4	89
22	1,3,2,5-Diazadiborinine featuring nucleophilic and electrophilic boron centres. Nature Communications, 2015, 6, 7340.	12.8	87
23	Ferroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectric. Nature Materials, 2021, 20, 612-617.	27.5	87
24	Abnormal N-Heterocyclic Carbene Promoted Suzukiâ~'Miyaura Coupling Reaction: A Comparative Study. Organometallics, 2010, 29, 6343-6349.	2.3	86
25	Ambiphilic boron in 1,4,2,5-diazadiborinine. Nature Communications, 2016, 7, 11871.	12.8	84
26	Diverse reactivity of a tricoordinate organoboron L ₂ PhB: (L = oxazol-2-ylidene) towards alkali metal, group 9 metal, and coinage metal precursors. Chemical Science, 2015, 6, 2893-2902.	7.4	83
27	Arene CHO Hydrogen Bonding: A Stereocontrolling Tool in Palladiumâ€Catalyzed Arylation and Vinylation of Ketones. Angewandte Chemie - International Edition, 2013, 52, 4906-4911.	13.8	82
28	Palladium atalyzed Asymmetric Intermolecular Cyclization. Angewandte Chemie - International Edition, 2013, 52, 8676-8680.	13.8	82
29	Occurrence of Chiral Nanostructures Induced by Multiple Hydrogen Bonds. Journal of the American Chemical Society, 2019, 141, 9946-9954.	13.7	81
30	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56, 6715-6718.	4.1	81
31	Alkene–Carbene Isomerization induced by Borane: Access to an Asymmetrical Diborene. Journal of the American Chemical Society, 2017, 139, 5047-5050.	13.7	78
32	1,5,9-Triaza-2,6,10-triphenylboracoronene: BN-Embedded Analogue of Coronene. Organic Letters, 2015, 17, 560-563.	4.6	76
33	Pyrene ontaining Twistarene: Twelve Benzene Rings Fused in a Row. Angewandte Chemie - International Edition, 2018, 57, 13555-13559.	13.8	76
34	Metal-Free σ-Bond Metathesis in Ammonia Activation by a Diazadiphosphapentalene. Journal of the American Chemical Society, 2014, 136, 16764-16767.	13.7	75
35	Asymmetric Synthesis of Enaminophosphines via Palladacycle-Catalyzed Addition of Ph ₂ PH to α,β-Unsaturated Imines. Journal of Organic Chemistry, 2012, 77, 6849-6854.	3.2	71
36	Highly active catalysts of bisphosphine oxides for asymmetric Heck reaction. Chemical Communications, 2013, 49, 9425.	4.1	70

#	Article	IF	CITATIONS
37	Single-crystal growth, structures, charge transfer and transport properties of anthracene-F ₄ TCNQ and tetracene-F ₄ TCNQ charge-transfer compounds. CrystEngComm, 2017, 19, 618-624.	2.6	70
38	Molecule-Based Water-Oxidation Catalysts (WOCs): Cluster-Size-Dependent Dye-Sensitized Polyoxometalates for Visible-Light-Driven O2 Evolution. Scientific Reports, 2013, 3, 1853.	3.3	69
39	Palladacycle-Catalyzed Asymmetric Intermolecular Construction of Chiral Tertiary P-Heterocycles by Stepwise Addition of H–P–H Bonds to Bis(enones). Organometallics, 2012, 31, 4871-4875.	2.3	67
40	Boosting the Iodine Adsorption and Radioresistance of Thâ€UiOâ€66 MOFs via Aromatic Substitution. Chemistry - A European Journal, 2021, 27, 1286-1291.	3.3	65
41	Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry. Advanced Materials, 2017, 29, 1605053.	21.0	64
42	Chiral Phosphapalladacycles as Efficient Catalysts for the Asymmetric Hydrophosphination of Substituted Methylidenemalonate Esters: Direct Access to Functionalized Tertiary Chiral Phosphines. Organometallics, 2012, 31, 3022-3026.	2.3	63
43	Isolation of an Iminoâ€Nâ€heterocyclic Carbene/Germanium(0) Adduct: A Mesoionic Germylene Equivalent. Angewandte Chemie - International Edition, 2014, 53, 13106-13109.	13.8	63
44	lsolation of a Diborane(6) Dication: Formation and Cleavage of an Electron-Precise B(sp ³)–B(sp ³) Bond. Journal of the American Chemical Society, 2016, 138, 8623-8629.	13.7	63
45	A Silyliumylidene Cation Stabilized by an Amidinate Ligand and 4â€Dimethylaminopyridine. Chemistry - A European Journal, 2013, 19, 11786-11790.	3.3	60
46	A crystalline Cu–Sn–S framework for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 19410-19416.	10.3	60
47	Crystalline Neutral Allenic Diborene. Angewandte Chemie - International Edition, 2017, 56, 9829-9832.	13.8	58
48	Enantioselective Addition of Diphenylphosphine to 3â€Methylâ€4â€nitroâ€5â€alkenylisoxazoles. Advanced Synthesis and Catalysis, 2013, 355, 1403-1408.	4.3	55
49	Hole Mobility Modulation in Singleâ€Crystal Metal Phthalocyanines by Changing the Metal–π/π–π Interactions. Angewandte Chemie - International Edition, 2018, 57, 10112-10117.	13.8	54
50	Co ₆ (μ ₃ -OH) ₆ cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Transactions, 2014, 43, 2559-2565.	3.3	53
51	Reversible [4 + 2] cycloaddition reaction of 1,3,2,5-diazadiborinine with ethylene. Chemical Science, 2015, 6, 7150-7155.	7.4	52
52	Synthesis, Structures, and Solution Dynamics of Palladium Complexes of Quinoline-Functionalized N-Heterocyclic Carbenes. Inorganic Chemistry, 2008, 47, 8031-8043.	4.0	51
53	Unusual Domino Michael/Aldol Condensation Reactions Employing Oximes as Nâ€Selective Nucleophiles: Synthesis of <i>N</i> â€Hydroxypyrroles. Angewandte Chemie - International Edition, 2009, 48, 758-761.	13.8	51
54	Asymmetric 1,4-Conjugate Addition of Diarylphosphines to α,β,γ,δ-Unsaturated Ketones Catalyzed by Transition-Metal Pincer Complexes. Organometallics, 2015, 34, 5196-5201.	2.3	51

#	Article	IF	CITATIONS
55	Palladium catalyzed asymmetric hydrophosphination of α,β- and α,β,γ,Î′-unsaturated malonate esters – efficient control of reactivity, stereo- and regio-selectivity. Dalton Transactions, 2015, 44, 1258-1263.	3.3	49
56	Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. Nature Communications, 2016, 7, 13455.	12.8	48
57	Iridium Abnormal N-Heterocyclic Carbene Hydrides via Highly Selective Câ^'H Activation. Organometallics, 2008, 27, 1187-1192.	2.3	46
58	Enantioselective phospha-Michael addition of diarylphosphines to β,γ-unsaturated α-ketoesters and amides. Chemical Communications, 2014, 50, 8768-8770.	4.1	46
59	A multi-step solvent-free mechanochemical route to indium(<scp>iii</scp>) complexes. Dalton Transactions, 2016, 45, 7941-7946.	3.3	46
60	Synthesis of a Bent 2-Silaallene with a Perturbed Electronic Structure from a Cyclic Alkyl(amino) Carbene-Diiodosilylene. Inorganic Chemistry, 2016, 55, 9091-9098.	4.0	45
61	Trapping a Silicon(I) Radical with Carbenes: A Cationic cAAC–Silicon(I) Radical and an NHC–Parentâ€Silyliumylidene Cation. Angewandte Chemie - International Edition, 2017, 56, 7573-7578.	13.8	45
62	Waterâ€Bindingâ€Mediated Gelation/Crystallization and Thermosensitive Superchirality. Angewandte Chemie - International Edition, 2018, 57, 7774-7779.	13.8	45
63	From Linear to Angular Isomers: Achieving Tunable Charge Transport in Single rystal Indolocarbazoles Through Delicate Synergetic CH/NHâ‹â‹î€ Interactions. Angewandte Chemie - International Edition, 2018, 57, 8875-8880.	13.8	44
64	Synthesis and Structural Characterization of Complexes of a DO3A-Conjugated Triphenylphosphonium Cation with Diagnostically Important Metal Ions. Inorganic Chemistry, 2007, 46, 8988-8997.	4.0	43
65	Dye-sensitized polyoxometalate for visible-light-driven photoelectrochemical cells. Dalton Transactions, 2015, 44, 14354-14358.	3.3	43
66	A Novel Approach toward Asymmetric Synthesis of Alcohol Functionalized C-Chiral Diphosphines via Two-Stage Hydrophosphination of Terminal Alkynols. Inorganic Chemistry, 2006, 45, 7455-7463.	4.0	42
67	1,2,4,3-Triazaborole-based neutral oxoborane stabilized by a Lewis acid. Chemical Communications, 2014, 50, 8561.	4.1	42
68	Metal Coordination Sphere Deformation Induced Highly Stokesâ€6hifted, Ultra Broadband Emission in 2D Hybrid Leadâ€Bromide Perovskites and Investigation of Its Origin. Angewandte Chemie - International Edition, 2020, 59, 10791-10796.	13.8	42
69	A Novel Asymmetric Hydroarsination Reaction Promoted by a Chiral Organopalladium Complex. Inorganic Chemistry, 2007, 46, 4733-4736.	4.0	40
70	Highly Enantioselective Synthesis of (2-Pyridyl)phosphine Based C-Chiral Unsymmetrical P,N-Ligands Using a Chiral Palladium Complex. Organometallics, 2009, 28, 3941-3946.	2.3	40
71	Reactivity of a Distannylene toward Potassium Graphite: Synthesis of a Stannylidenide Anion. Organometallics, 2012, 31, 6415-6419.	2.3	40
72	Selective Arylation and Vinylation at the α Position of Vinylarenes. Chemistry - A European Journal, 2013, 19, 3504-3511.	3.3	40

#	Article	IF	CITATIONS
73	Azaborabutadienes: Synthesis by Metalâ€Free Carboboration of Nitriles and Utility as Building Blocks for B,Nâ€Heterocycles. Angewandte Chemie - International Edition, 2016, 55, 14718-14722.	13.8	40
74	Impact of C–H··À·X (X = F, N) and π–π Interactions on Tuning the Degree of Charge Transfer in F ₆ TNAP-Based Organic Binary Compound Single Crystals. Crystal Growth and Design, 2018, 18, 1776-1785.	3.0	40
75	Inducing formation of a corrugated, white-light emitting 2D lead-bromide perovskite <i>via</i> subtle changes in templating cation. Journal of Materials Chemistry C, 2020, 8, 889-893.	5.5	40
76	Versatile Syntheses of Optically Pure PCE Pincer Ligands: Facile Modifications of the Pendant Arms and Ligand Backbones. Organometallics, 2015, 34, 1582-1588.	2.3	39
77	A highly efficient dual catalysis approach for C-glycosylation: addition of (o-azaaryl)carboxaldehyde to glycals. Chemical Communications, 2014, 50, 13391-13393.	4.1	38
78	The synthesis and efficient one-pot catalytic "self-breeding―of asymmetrical NC(sp ³)E-hybridised pincer complexes. Chemical Communications, 2016, 52, 4211-4214.	4.1	38
79	Stibine-protected Au ₁₃ nanoclusters: syntheses, properties and facile conversion to GSH-protected Au ₂₅ nanocluster. Chemical Science, 2018, 9, 8723-8730.	7.4	38
80	A Base‣tabilized Lead(I) Dimer and an Aromatic Plumbylidenide Anion. Angewandte Chemie - International Edition, 2013, 52, 6298-6301.	13.8	37
81	Synthesis, characterization, and electronic structures of a methyl germyliumylidene ion and germylone-group VI metal complexes. Chemical Communications, 2016, 52, 613-616.	4.1	36
82	The Original Coordination Chemistry of 2-Phosphaphenol with Copper(I) and Gold(I) Halides. Organometallics, 2013, 32, 3562-3565.	2.3	35
83	Pdâ€Catalyzed Enantiodivergent and Regiospecific <i>phospha</i> â€Michael Addition of Diphenylphosphine to 4â€ <i>oxo</i> â€Enamides: Efficient Access to Chiral Phosphinocarboxamides and Their Analogues. Chemistry - A European Journal, 2015, 21, 4800-4804.	3.3	35
84	Novel Stereochemistry, Reactivity, and Stability of an Arsenic Heterocycle in a Metal-Promoted Asymmetric Cycloaddition Reaction. Inorganic Chemistry, 2007, 46, 9488-9494.	4.0	34
85	Hydrogen bonding-assisted tautomerization of pyridine moieties in the coordination sphere of an Ir(i) complex. Chemical Communications, 2008, , 3558.	4.1	34
86	Synthesis and Structure of [Li ₂ C(PPh ₂ â•NSiMe ₃)(PPh ₂ â•6)]: A Geminal Dianionic Ligand. Organometallics, 2009, 28, 4617-4620.	2.3	34
87	Palladacycleâ€Catalyzed Tandem Allylic Amination/Allylation Protocol for Oneâ€Pot Synthesis of 2â€Allylanilines from Allylic Alcohols. Advanced Synthesis and Catalysis, 2012, 354, 83-87.	4.3	34
88	Co(II)-tricarboxylate metal–organic frameworks constructed from solvent-directed assembly for CO2 adsorption. Microporous and Mesoporous Materials, 2013, 176, 194-198.	4.4	34
89	Electrostatic Catalyst Generated from Diazadiborinine for Carbonyl Reduction. CheM, 2017, 3, 134-151.	11.7	34
90	A Crystalline Diazadiborinine Radical Cation and Its Boron entered Radical Reactivity. Angewandte Chemie - International Edition, 2018, 57, 7826-7829.	13.8	34

#	Article	IF	CITATIONS
91	Asymmetric Synthesis of Diphosphine Ligands Containing Phosphorus and Carbon Stereogenic Centers by Means of a Chiral Palladium Complex Promoted Hydrophosphination Reaction. Inorganic Chemistry, 2009, 48, 5535-5539.	4.0	33
92	Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Advances, 2015, 5, 63080-63086.	3.6	33
93	Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through π-Stacked Viologens. Chemistry of Materials, 2018, 30, 5827-5830.	6.7	33
94	Experimental and theoretical studies on pyrene-grafted polyoxometalate hybrid. Dalton Transactions, 2012, 41, 12185.	3.3	32
95	Engineering the Frontier Orbitals of a Diazadiborinine for Facile Activation of H ₂ , NH ₃ , and an Isonitrile. Angewandte Chemie - International Edition, 2018, 57, 7846-7849.	13.8	32
96	Boron Analogue of Vinylidene Dication Supported by Phosphines. Journal of the American Chemical Society, 2018, 140, 1255-1258.	13.7	31
97	Metal-Free Selective Borylation of Arenes by a Diazadiborinine via C–H/C–F Bond Activation and Dearomatization. Journal of the American Chemical Society, 2019, 141, 13729-13733.	13.7	31
98	Isolation of a Cyclic (Alkyl)(amino)germylene. Molecules, 2016, 21, 990.	3.8	30
99	Facile Activation of Homoatomic σ Bonds in White Phosphorus and Diborane by a Diboraallene. Angewandte Chemie - International Edition, 2018, 57, 15691-15695.	13.8	30
100	Asymmetric Synthesis of Functionalized 1,2-Diphosphine via the Chemoselective Hydrophosphination of Coordinated Allylic Phosphines. Organometallics, 2009, 28, 780-786.	2.3	29
101	Asymmetric Synthesis of New Diphosphines and Pyridylphosphines via a Kinetic Resolution Process Promoted and Controlled by a Chiral Palladacycle. Organometallics, 2010, 29, 3374-3386.	2.3	29
102	Amidinate-Stabilized Group 9 Metal–Silicon(I) Dimer and â^'Silylene Complexes. Inorganic Chemistry, 2015, 54, 9968-9975.	4.0	29
103	Synthesis and the Optical and Electrochemical Properties of Indium(III) Bis(arylimino)acenaphthene Complexes. Inorganic Chemistry, 2017, 56, 7811-7820.	4.0	29
104	Crystalline Tetraatomic Boron(0) Species. Journal of the American Chemical Society, 2019, 141, 5164-5168.	13.7	29
105	Cyclopalladation of the Prochiral (Di-tert-butyl)(diphenylmethyl)phosphine:Â Kinetic Lability of the Corresponding (+)-Phosphapalladacyclic Pdâ °C Bond and the Reluctance of the Phosphine to Bind in a Monodentate Fashion. Inorganic Chemistry, 2007, 46, 5100-5109.	4.0	28
106	Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents. Electrochimica Acta, 2013, 112, 287-294.	5.2	28
107	N-Heterocyclic Carbene C,S Palladium(II) π-Allyl Complexes: Synthesis, Characterization, and Catalytic Application In Allylic Amination Reactions. Organometallics, 2013, 32, 2389-2397.	2.3	28
108	B–H Bond Activation by an Amidinate-Stabilized Amidosilylene: Non-Innocent Amidinate Ligand. Inorganic Chemistry, 2018, 57, 5879-5887.	4.0	28

#	Article	IF	CITATIONS
109	Desymmetrization of Achiral Heterobicyclic Alkenes through Catalytic Asymmetric Hydrophosphination. Chemistry - an Asian Journal, 2018, 13, 2829-2833.	3.3	28
110	Groupâ€II Metal Complexes of the Germylidendiide Dianion Radical and Germylidenide Anion. Angewandte Chemie - International Edition, 2014, 53, 8455-8458.	13.8	27
111	Palladacycle Catalyzed Asymmetric PH Addition of Diarylphosphines to <i>N</i> â€Enoyl Phthalimides. Chemistry - A European Journal, 2014, 20, 14514-14517.	3.3	27
112	Formation of Boron–Main-Group Element Bonds by Reactions with a Tricoordinate Organoboron L ₂ PhB: (L = Oxazol-2-ylidene). Inorganic Chemistry, 2017, 56, 5586-5593.	4.0	27
113	Diverse Bonding Activations in the Reactivity of a Pentaphenylborole toward Sodium Phosphaethynolate: Heterocycle Synthesis and Mechanistic Studies. Inorganic Chemistry, 2017, 56, 4112-4120.	4.0	27
114	Asymmetric Synthesis of Functionalized 1,3-Diphosphines via Chiral Palladium Complex Promoted Hydrophosphination of Activated Olefins. Inorganic Chemistry, 2010, 49, 989-996.	4.0	26
115	Palladium Template Promoted Asymmetric Synthesis of 1,2-Diphosphines by Hydrophosphination of Functionalized Allenes. Organometallics, 2010, 29, 536-542.	2.3	26
116	A Colorimetric and Fluorimetric Chemodosimeter for Copper Ion Based on the Conversion of Dihydropyrazine to Pyrazine. Chemistry - an Asian Journal, 2016, 11, 136-140.	3.3	26
117	Mechanochemical Synthesis of Phosphazaneâ€Based Frameworks. Chemistry - A European Journal, 2017, 23, 11279-11285.	3.3	26
118	Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
119	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylarsole and Diphenylvinylphosphine Oxide. Organometallics, 2009, 28, 4886-4889.	2.3	25
120	Zwitterionic Base‧tabilized Digermadistannacyclobutadiene and Tetragermacyclobutadiene. Chemistry - A European Journal, 2013, 19, 14726-14731.	3.3	25
121	Synthesis and structural characterization of a C ₄ cumulene including 4-pyridylidene units, and its reactivity towards ammonia-borane. Chemical Communications, 2014, 50, 12378-12381.	4.1	25
122	A Base-Stabilized Silyliumylidene Cation as a Ligand for Rhodium and Tungsten Complexes. Organometallics, 2014, 33, 3646-3648.	2.3	25
123	Synthesis and Hydrolytic Studies on the Air-Stable [(4-CN-PhO)(E)P(μ-N ^{<i>t</i>} Bu)] ₂ (E = O, S, and Se) Cyclodiphosphazanes. Inorganic Chemistry, 2015, 54, 6423-6432.	4.0	25
124	Serendipitous Observation of Al ^I Insertion into a Câ^'O Bond in L ₂ PhB (L=Oxazolâ€2â€ylidene). Chemistry - A European Journal, 2016, 22, 1922-1925.	3.3	25
125	Mechanistic insights into the role of PC- and PCP-type palladium catalysts in asymmetric hydrophosphination of activated alkenes incorporating potential coordinating heteroatoms. Dalton Transactions, 2016, 45, 13449-13455.	3.3	25
126	Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid Perovskite Phase Transition Material. Journal of Physical Chemistry A, 2018, 122, 6416-6423.	2.5	25

#	Article	IF	CITATIONS
127	Targeted Synthesis of Trimeric Organic–Bromoplumbate Hybrids That Display Intrinsic, Highly Stokes-Shifted, Broadband Emission. Chemistry of Materials, 2020, 32, 4431-4441.	6.7	25
128	Chelation-Assisted Carbon-Halogen Bond Activation by a Rhodium(I) Complex. Inorganic Chemistry, 2009, 48, 1198-1206.	4.0	24
129	Chiral cyclopalladated complex promoted asymmetric synthesis of diester-substituted P,N-ligands via stepwise hydrophosphination and hydroamination reactions. Dalton Transactions, 2012, 41, 5391.	3.3	24
130	Catalytic Asymmetric Diarylphosphine Addition to α-Diazoesters for the Synthesis of P-Stereogenic Phosphinates via P*—N Bond Formation. Journal of Organic Chemistry, 2020, 85, 14763-14771.	3.2	24
131	N-Heteroheptacenequinone and N-heterononacenequinone: synthesis, physical properties, crystal structures and photoelectrochemical behaviors. Journal of Materials Chemistry C, 2015, 3, 9877-9884.	5.5	23
132	Reactivity Studies on a Diazadiphosphapentalene. Chemistry - A European Journal, 2016, 22, 9976-9985.	3.3	23
133	Reactivity of an amidinato silylene and germylene toward germanium(<scp>ii</scp>), tin(<scp>ii</scp>) and lead(<scp>ii</scp>) halides. Dalton Transactions, 2017, 46, 3642-3648.	3.3	23
134	Orthogonality in main group compounds: a direct one-step synthesis of air- and moisture-stable cyclophosphazanes by mechanochemistry. Chemical Communications, 2018, 54, 6800-6803.	4.1	23
135	Two-Dimensional and Emission-Tunable: An Unusual Perovskite Constructed from Lindqvist-Type [Pb6Br19]7– Nanoclusters. Inorganic Chemistry, 2018, 57, 14035-14038.	4.0	23
136	Enantioselective Dielsâ^'Alder Reaction of 3-Diphenylphosphinofuran with 1-Phenyl-3,4-dimethylphosphole and Subsequent Synthetic Manipulations of the Cycloadduct. Organometallics, 2009, 28, 6254-6259.	2.3	22
137	Reaction of Terminal Phosphinidene Complexes with Dihydrogen. Organometallics, 2012, 31, 2936-2939.	2.3	22
138	Stereoelectronic and Catalytic Properties of Chiral Cyclometalated Phospha-palladium and -platinum Complexes. Organometallics, 2014, 33, 6053-6058.	2.3	22
139	Isolation and Reactivity of 1,4,2-Diazaborole. Journal of the American Chemical Society, 2015, 137, 11274-11277.	13.7	22
140	Base controlled (1,1)- and (1,2)-hydrophosphination of functionalized alkynes. Tetrahedron Letters, 2008, 49, 1762-1767.	1.4	21
141	Asymmetric Construction of a Ferrocenyl Phosphapalladacycle from Achiral Enones and a Demonstration of Its Catalytic Potential. Organometallics, 2014, 33, 5074-5076.	2.3	20
142	lsomerization of Secondary Phosphirane into Terminal Phosphinidene Complexes: An Analogy between Monovalent Phosphorus and Transition Metals. Angewandte Chemie - International Edition, 2015, 54, 12891-12893.	13.8	20
143	Asymmetric synthesis of 1,2-bis(diphenylphosphino)-1-phenylethane via a chiral palladium template promoted hydrophosphination reaction. Journal of Organometallic Chemistry, 2009, 694, 3500-3505.	1.8	19
144	Novel Synthesis of Chiral 1,3-Diphosphines via Palladium Template Promoted Hydrophosphination and Functional Group Transformation Reactions. Organometallics, 2010, 29, 3582-3588.	2.3	19

#	Article	IF	CITATIONS
145	Synthesis of a Tin(II) 1,3-Benzobis(thiophosphinoyl)methanediide Complex and Its Reactions with Aluminum Compounds. Organometallics, 2012, 31, 6538-6546.	2.3	19
146	Synthesis of a Germylidenide Anion from the C–C Bond Activation of a Bis(germylene). Organometallics, 2016, 35, 1060-1063.	2.3	19
147	Asymmetric Catalytic 1,2â€Dihydrophosphination of Secondary 1,2â€Diphosphines – Direct Access to Free <i>P</i> *―and <i>P</i> *, <i>C</i> *â€Diphosphines. Advanced Synthesis and Catalysis, 2020, 362, 2373-2378.	4.3	19
148	Design, Synthesis, and Stereochemical Evaluation of a Novel Chiral Amine–Palladacycle. European Journal of Inorganic Chemistry, 2008, 2008, 1880-1891.	2.0	18
149	An Approach to the Efficient Syntheses of Chiral Phosphino―Carboxylic Acid Esters. Advanced Synthesis and Catalysis, 2015, 357, 3297-3302.	4.3	18
150	Synthesis, structural studies and ligand influence on the stability of aryl-NHC stabilised trimethylaluminium complexes. Dalton Transactions, 2015, 44, 15166-15174.	3.3	18
151	Crystalline boron-linked tetraaminoethylene radical cations. Chemical Science, 2017, 8, 7419-7423.	7.4	18
152	Hybrid 2D [Pb(CH ₃ NH ₂)I ₂] _{<i>n</i>} Coordination Polymer Precursor for Scalable Perovskite Deposition. ACS Energy Letters, 2020, 5, 2305-2312.	17.4	18
153	Rational Design of a Novel Chiral Palladacycle: Synthesis, Optical Resolution, and Stereochemical Evaluation. European Journal of Inorganic Chemistry, 2009, 2009, 267-276.	2.0	17
154	Novel Enantioselective Synthesis of Functionalized Pyridylarsanes by a Chiral Palladium Template Promoted Asymmetric Hydroarsanation Reaction. European Journal of Inorganic Chemistry, 2009, 2009, 4134-4140.	2.0	17
155	Synthesis and Characterisation of a Novel Chiral Bidentate Pyridine-N-Heterocyclic Carbene-Based Palladacycle. European Journal of Inorganic Chemistry, 2010, 2010, 1413-1418.	2.0	17
156	Asymmetric hydroarsination reactions toward synthesis of alcohol functionalised C-chiral As–P ligands promoted by chiral cyclometallated complexes. Journal of Organometallic Chemistry, 2012, 696, 4215-4220.	1.8	17
157	Highly selective anti-cancer properties of ester functionalized enantiopure dinuclear gold(I)-diphosphine. European Journal of Medicinal Chemistry, 2015, 98, 250-255.	5.5	17
158	Efficient and stereoselective synthesis of monomeric and bimetallic pincer complexes containing Pd-bonded stereogenic carbons. RSC Advances, 2016, 6, 75951-75959.	3.6	17
159	Interpenetration Control in Thorium Metal–Organic Frameworks: Structural Complexity toward Iodine Adsorption. Inorganic Chemistry, 2021, 60, 5617-5626.	4.0	17
160	Heteroleptic Germanium(II) and Tin(II) Chlorides Supported by Anionic Ligands Derived from 2,3â€Dimethylâ€1,4â€diazaâ€1,3â€butadiene. European Journal of Inorganic Chemistry, 2014, 2014, 526-532.	2.0	16
161	Development of a novel chiral palladacycle and its application in asymmetric hydrophosphination reaction. Dalton Transactions, 2014, 43, 5777-5784.	3.3	16
162	Nickel catalyzed enantioselective hydroarsination of nitrostyrene. Chemical Communications, 2017, 53, 6307-6310.	4.1	16

#	Article	IF	CITATIONS
163	Design and assembly of a chiral composite metal–organic framework for efficient asymmertric sequential transformation of alkenes to amino alcohols. Chemical Communications, 2019, 55, 9136-9139.	4.1	16
164	Fully conjugated azacorannulene dimer as large diaza[80]fullerene fragment. Nature Communications, 2022, 13, 1498.	12.8	16
165	A Rare η3 Binding Mode of Aryloxides in Iridium, Rhodium, and Ruthenium Complexes. Organometallics, 2008, 27, 6390-6392.	2.3	15
166	Organoplatinum Complex Promoted the Asymmetric <i>Endo</i> Stereochemically Controlled Dielsâ~Alder Reaction between 3-Diphenylphosphinofuran and Diphenylvinylphosphine. Inorganic Chemistry, 2009, 48, 11394-11398.	4.0	15
167	Synthesis of a Chiral Palladacycle and Its Application in Asymmetric Hydrophosphanation Reactions. European Journal of Inorganic Chemistry, 2010, 2010, 4427-4437.	2.0	15
168	Synthesis, Structural Characterisation and Stereochemical Investigation of Chiral Sulfurâ€Functionalised Nâ€Heterocyclic Carbene Complexes of Palladium and Platinum. Chemistry - A European Journal, 2013, 19, 5468-5475.	3.3	15
169	Acyclic Amidoâ€Containing Silanechalcogenones. European Journal of Inorganic Chemistry, 2015, 2015, 3821-3824.	2.0	15
170	Reactivity of a Base-Stabilized Germanium(I) Dimer toward Group 9 Metal(I) Chloride and Dimanganese Decacarbonyl. Inorganic Chemistry, 2017, 56, 5402-5410.	4.0	15
171	Aryl-NHC-group 13 trimethyl complexes: structural, stability and bonding insights. Dalton Transactions, 2017, 46, 854-864.	3.3	15
172	Polymer-Assisted Single Crystal Engineering of Organic Semiconductors To Alter Electron Transport. ACS Applied Materials & Interfaces, 2018, 10, 11837-11842.	8.0	15
173	Synthesis of Stereoprojecting, Chiral N-C(sp ³)-E Type Pincer Complexes. Organometallics, 2018, 37, 2272-2285.	2.3	15
174	Investigating palladium pincer complexes in catalytic asymmetric hydrophosphination and hydroarsination. Dalton Transactions, 2019, 48, 4602-4610.	3.3	15
175	Bisguanidinium-Catalyzed Epoxidation of Allylic and Homoallylic Amines under Phase Transfer Conditions. ACS Catalysis, 2020, 10, 2684-2691.	11.2	15
176	Synthesis of 2,5-Disubstituted Pyrrolidines from N-Alkenyl and Alkynyl N-Benzoyloxysulfonamides Catalyzed by (CuOTf)2. Bulletin of the Korean Chemical Society, 2010, 31, 563-569.	1.9	15
177	Enantioselective, High‥ielding Synthesis of Alcoholâ€Functionalized Diphosphanes Utilizing Asymmetric Control with a Chiral Auxiliary. European Journal of Inorganic Chemistry, 2009, 2009, 2375-2382.	2.0	14
178	Controllable synthesis of P-chiral 1,2- and 1,3-diphosphines via asymmetric Diels–Alder reactions involving functionalized allylic phosphines as dienophiles. Dalton Transactions, 2009, , 3668.	3.3	14
179	A Dimeric NHC–Silicon Monotelluride: Synthesis, Isomerization, and Reactivity. Angewandte Chemie - International Edition, 2017, 56, 11565-11569.	13.8	14
180	Structural Mimics of the [Fe]-Hydrogenase: A Complete Set for Group VIII Metals. Inorganic Chemistry, 2018, 57, 7113-7120.	4.0	14

#		Article	IF	CITATIONS
18	31	Palladacycle promoted asymmetric hydrophosphination of \hat{I}_{\pm}, \hat{I}^2 -unsaturated sulfonyl fluorides. Journal of Organometallic Chemistry, 2019, 899, 120912.	1.8	14
18	82	Molecular Engineering of Pure 2D Leadâ€lodide Perovskite Solar Absorbers Displaying Reduced Band Gaps and Dielectric Confinement. ChemSusChem, 2020, 13, 2693-2701.	6.8	14
18	33	Catalytic Approach toward Chiral P,N-Chelate Complexes Utilizing the Asymmetric Hydrophosphination Protocol. Inorganic Chemistry, 2020, 59, 3874-3886.	4.0	14
18	34	Asymmetric synthesis of a chiral arsinophosphine via a metal template promoted asymmetric Diels–Alder reaction between diphenylvinylphosphine and 2-furyldiphenylarsine. Journal of Organometallic Chemistry, 2006, 691, 4753-4758.	1.8	13
18	35	A Cyclometallated (Azobenzene)palladium(II) Complex of 1,4,7-Trithiacyclononane: Synthesis and Reactivity with Thioether-Dithiolate Metalloligands, Single-Crystal X-ray Diffraction Analyses and Electrochemical Studies. European Journal of Inorganic Chemistry, 2009, 2009, 2282-2293.	2.0	13
18	86	Oxo-Bridged Bis(group 4 metal unsymmetric phosphonium-stabilized carbene) Complexes. Organometallics, 2015, 34, 1238-1244.	2.3	13
18	37	A Bis(germyliumylidene)silver(I) Complex Dication. Organometallics, 2018, 37, 1368-1372.	2.3	13
18	38	Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Chromium and Cobalt Complexes. Inorganic Chemistry, 2020, 59, 4118-4128.	4.0	13
18	39	Synthesis, Coordination Characteristics, Conformational Behavior, and Bond Reactivity Studies of a Novel Chiral Phosphapalladacycle Complex. Organometallics, 2009, 28, 4358-4370.	2.3	12
19	9 0	Reactivity of a Tin(II) (Iminophosphinoyl)(thiophosphinoyl)methanediide Complex Toward Sulfur: Synthesis and 119Sn Mössbauer Spectroscopic Studies of [{(μ-S)SnC(PPh2â•NSiMe3)(PPh2â•S)}3Sn(μ3-S)]. Inorganic Chemistry, 2012, 51, 3996-4001.	4.0	12
19	91	Anti-Markovnikov hydroimination of terminal alkynes in gold-catalyzed pyridine construction from ammonia. Chemical Communications, 2015, 51, 12419-12422.	4.1	12
19	92	Ring Expansion, Photoisomerization, and Retrocyclization of 1,4,2â€Điazaboroles. Angewandte Chemie - International Edition, 2017, 56, 14572-14576.	13.8	12
19	93	Stereogenic Lock in 1-Naphthylethanamine Complexes for Catalyst and Auxiliary Design: Structural and Reactivity Analysis for Cycloiridated Pseudotetrahedral Complexes. Organometallics, 2018, 37, 99-106.	2.3	12
19	94	Asymmetric Synthesis of P-Stereogenic Homo- and Heterobimetallic Complexes via Selective Monoinsertion of Dialkynylphosphine into the Pdâ~'C Bond of a Palladacycle. Organometallics, 2011, 30, 1530-1550.	2.3	11
19	95	Synthesis of Homo―and Heteroâ€Bimetallic Arsenic Complexes by Means of Regioselective Monoinsertion of Alkynylarsane into the Pd–C Bond of a Palladacycle. European Journal of Inorganic Chemistry, 2011, 2011, 3111-3121.	2.0	11
19	96	Reactivity of a Tin(II) (Iminophosphinoyl)(thiophosphinoyl)methanediide Complex toward Isocyanates and Rhodium(I) Chloride. Organometallics, 2012, 31, 3888-3893.	2.3	11
19	97	Synthesis and Reactivity of Cationic Iridium Aminocarbenes Derived from Terminal Alkynes and 2-Aminopyridines. Organometallics, 2013, 32, 4149-4152.	2.3	11
19	98	A Base-Stabilized 2-Silaallene. Organometallics, 2013, 32, 2267-2270.	2.3	11

#	Article	IF	CITATIONS
199	Reactivity of a Tin(II) 1,3-Benzodi(thiophosphinoyl)methanediide Complex toward Gallium, Germanium, and Zinc Compounds. Organometallics, 2013, 32, 2643-2648.	2.3	11
200	Embedding a Ruthenium-Based Structural Mimic of the [Fe]-Hydrogenase Cofactor into Papain. Inorganic Chemistry, 2018, 57, 12206-12212.	4.0	11
201	Ru4(CO)8(μ-OOCAd)4(PPh3)2: Phosphine Derivative of an Electron-Deficient Linear Tetraruthenium Cluster. Organometallics, 2011, 30, 6774-6777.	2.3	10
202	Synthesis, Optical Resolution, and Stereochemical Properties of a Rationally Designed Chiral C–N Palladacycle. Organometallics, 2014, 33, 930-940.	2.3	10
203	A One-Pot Diastereoselective Self Assembly of C-Stereogenic Copper(I) Diphosphine Clusters. Inorganic Chemistry, 2014, 53, 10232-10239.	4.0	10
204	Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes. Dalton Transactions, 2016, 45, 13556-13564.	3.3	10
205	Efficient access to a designed phosphapalladacycle catalyst via enantioselective catalytic asymmetric hydrophosphination. Dalton Transactions, 2017, 46, 1311-1316.	3.3	10
206	Synthesis and thermal reactivity of a Me3N-stabilized cyclic (alkyl)(amino)oxophosphonium ion. Inorganica Chimica Acta, 2017, 460, 2-7.	2.4	10
207	Structure engineering: extending the length of azaacene derivatives through quinone bridges. Journal of Materials Chemistry C, 2018, 6, 3628-3633.	5.5	10
208	Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angewandte Chemie, 2022, 134, .	2.0	10
209	Electrochemically Controlled Oneâ€Electron Oxidation Coupled to Consecutive Hydrogen Atom Transfer of Caffeine. ChemElectroChem, 2014, 1, 1557-1562.	3.4	9
210	Palladacycle promoted base controlled regio- and enantioselective hydrophosphination of 2-pyridylacrylate/amide and the cytotoxicity of their gold complexes. Dalton Transactions, 2015, 44, 17557-17564.	3.3	9
211	Delocalized Hypervalent Silyl Radical Supported by Amidinate and Imino Substituents. Inorganic Chemistry, 2017, 56, 701-704.	4.0	9
212	Isolation and Reactivity of a Chlorogermyliumylidene Featuring Two Ge-Cl Units. European Journal of Inorganic Chemistry, 2018, 2018, 2228-2231.	2.0	9
213	Ruthenacyclic Carbamoyl Complexes: Highly Efficient Catalysts for Organosilane Hydrolysis. European Journal of Inorganic Chemistry, 2018, 2018, 4982-4986.	2.0	9
214	Synthesis of Unique Phosphazane Macrocycles via Steric Activation of C–N Bonds. Inorganic Chemistry, 2018, 57, 10993-11004.	4.0	9
215	Germylone-bridged bimetallic Ir and Rh complexes. Dalton Transactions, 2019, 48, 3555-3559.	3.3	9
216	Template effects on the asymmetric cycloaddition reaction between 3,4-dimethyl-1-phenylarsole and diphenylvinylphosphine and their arsenic elimination reaction. Journal of Organometallic Chemistry, 2009. 694. 1929-1933.	1.8	8

#	Article	IF	CITATIONS
217	Stepwise Functionalization of Two Alkyne Moieties in a Dialkynylphosphine Complex Leading to the Formation of a Bifunctionalized Phosphine Complex Bearing a Stereogenic Center at Phosphorus. Organometallics, 2009, 28, 6266-6274.	2.3	8
218	Reactivity of Cycloplatinated Amine Complexes: Intramolecular C–C Bond Formation, C–H Activation, and PPh ₂ Migration in Coordinated Alkynylphosphines. Organometallics, 2012, 31, 8407-8413.	2.3	8
219	Synthesis, physical properties, and sensing behaviour of a novel naphthalenediimide derivative. Dyes and Pigments, 2016, 131, 224-230.	3.7	8
220	Synthesis of an N-Heterocyclic-Carbene-Stabilized Siladiimide. Inorganic Chemistry, 2016, 55, 4-6.	4.0	8
221	Computational and carbon-13 NMR studies of Pt–C bonds in P–C–P pincer complexes. Dalton Transactions, 2016, 45, 2095-2101.	3.3	8
222	A snapshot of inorganic Janovsky complex analogues featuring a nucleophilic boron center. Chemical Communications, 2017, 53, 12734-12737.	4.1	8
223	Triflic-Acid-Catalyzed Tandem Allylic Substitution–Cyclization Reaction of Alcohols with Thiophenols—Facile Access to Polysubstituted Thiochromans. ACS Omega, 2018, 3, 8945-8951.	3.5	8
224	Ironâ€Mediated Ringâ€Opening and Rearrangement Cascade Synthesis of Polysubstituted Pyrroles from 4â€Alkenylisoxazoles. Advanced Synthesis and Catalysis, 2020, 362, 1868-1876.	4.3	8
225	Metal Effects on the Asymmetric Synthesis of a New Heterobidentate As/P=S Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 1865-1871.	2.0	7
226	Syntheses of Bimetallic Zwitterionic Complexes Containing Stereogenic Bifunctionalized Phosphine through Stepwise Insertion and Hydration Reactions. Organometallics, 2010, 29, 893-903.	2.3	7
227	Chiral palladacycle promoted asymmetric synthesis of functionalized bis-phosphine monoxide ligand. Journal of Organometallic Chemistry, 2011, 696, 709-714.	1.8	7
228	Synthesis and Characterization of a 2,6-Diiminophenylgermanium(II) Hydroxide, Azide, and Triazaphospole. Organometallics, 2013, 32, 5231-5234.	2.3	7
229	The Original Reactivity of a Phosphole-Substituted Fischer Carbene Complex. Organometallics, 2013, 32, 2287-2290.	2.3	7
230	Polysubstituted pyrrole derivatives via 1,2-alkenyl migration of novel γ-amino-α,β-unsaturated aldehydes and α-diazocarbonyls. RSC Advances, 2014, 4, 7275.	3.6	7
231	Donor–Acceptor Stabilized Tetra(silanimine). Inorganic Chemistry, 2017, 56, 1609-1615.	4.0	7
232	Oxidative addition of elemental selenium to 1,4,2,5-diazadiborinine. Dalton Transactions, 2019, 48, 7514-7518.	3.3	7
233	Access to <i>C</i> -Stereogenic PN(<i>sp</i> ²)P Pincer Ligands via Phosphapalladacycle Catalyzed Asymmetric Hydrophosphination. Organometallics, 2021, 40, 682-692.	2.3	7
234	Synthesis and Characterization of Conformationally Rigid Chiral Pyridine–Nâ€Heterocyclic Carbeneâ€Based Palladacycles with an Unexpected Pd–N Bond Cleavage. Chirality, 2013, 25, 149-159.	2.6	6

#	Article	IF	CITATIONS
235	Mechanistic Insights into the PdII-Catalyzed ChemoselectiveN-Demethylation vs. Cyclometalation Reactivity Pathways in 1-Aryl-N,N-dimethylethanamines. European Journal of Inorganic Chemistry, 2014, 2014, 5046-5052.	2.0	6
236	Tandem double hydrophosphination of α,β,γ,β-unsaturated-1,3-indandiones: diphosphine synthesis, mechanistic investigations and coordination chemistry. Chemical Communications, 2019, 55, 10936-10939.	4.1	6
237	Palladacycle mediated synthesis of cyano-functionalized chiral 1,2-diphosphine and subsequent functional group transformations. Journal of Organometallic Chemistry, 2011, 696, 905-912.	1.8	5
238	Role of Steric Strain in the Chemistry of Phosphiranes. Organometallics, 2012, 31, 8456-8458.	2.3	5
239	Annelation of Phosphole-Substituted Fischer Carbene Complexes by Alkynes. Organometallics, 2013, 32, 7482-7486.	2.3	5
240	Instability of metal 1,3-benzodi(thiophosphinoyl)methandiide complexes: formation of hafnium, tin and zirconium complexes of 1,3-benzodi(thiophosphinoyl)thioketone dianionic ligand [1,3-C6H4(PhPS)2CS]2â^'. Dalton Transactions, 2015, 44, 12633-12639.	3.3	5
241	Catalytic asymmetric synthesis of Pt- and Pd-PCP pincer complexes bearing a para-N pyridinyl backbone. Journal of Organometallic Chemistry, 2018, 862, 22-27.	1.8	5
242	Efficient Synthesis of Malonate Functionalized Chiral Phosphapalladacycles and their Catalytic Evaluation in Asymmetric Hydrophosphination of Chalcone. European Journal of Inorganic Chemistry, 2018, 2018, 4385-4390.	2.0	5
243	Catalytic and Mechanistic Developments of the Nickel(II) Pincer Complex atalyzed Hydroarsination Reaction. Chemistry - A European Journal, 2019, 25, 11308-11317.	3.3	5
244	Intermolecular Insertion of Dialkynylphosphanes into the M-C Bond of Cyclopalladated Rings through Activation by Cyclometallated Amines. European Journal of Inorganic Chemistry, 2012, 2012, 1823-1831.	2.0	4
245	Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd–C Bond Insertion Reactions with Coordinated Alkynylphosphanes. European Journal of Inorganic Chemistry, 2013, 2013, 5487-5494.	2.0	4
246	Modifying the Chemistry of the Phosphole Dienic System by $\hat{I}\pm$ -Vinylation. Organometallics, 2014, 33, 4245-4250.	2.3	4
247	Palladacyclo-promoted asymmetric hydrophosphination reaction between diphenylphosphine and 2-ethynylpyridine. Journal of Organometallic Chemistry, 2016, 801, 1-5.	1.8	4
248	Challenges in cyclometalation: steric effects leading to competing pathways and η‹sup>1‹/sup>,η‹sup>2‹/sup>-cyclometalated iridium(‹scp>iii‹/scp>) complexes. Dalton Transactions, 2018, 47, 13046-13051.	3.3	4
249	Air-stable phosphine organocatalysts for the hydroarsination reaction. Journal of Organometallic Chemistry, 2020, 914, 121216.	1.8	4
250	Reactions of Cp*Ir(CO)2 with pentafluorobenzonitrile: Half-sandwich iridium complexes Cp*Ir(CO)(p-C6F4CN)(X). Journal of Organometallic Chemistry, 2013, 741-742, 176-180.	1.8	3
251	Investigation of Functional Group Effects on Palladium Catalysed Asymmetric P–H Addition. Australian Journal of Chemistry, 2016, 69, 499.	0.9	3
252	Photooxidation of a Twisted Isoquinolinone. Chemistry - an Asian Journal, 2018, 13, 250-254.	3.3	3

#	Article	IF	CITATIONS
253	Synthesis, characterization and photophysical studies of a novel polycyclic diborane. New Journal of Chemistry, 2019, 43, 564-568.	2.8	3
254	Very strong trans effect in ruthenacyclic carbamoyl complexes leads to ligand redistribution in phosphine derivatives. Journal of Organometallic Chemistry, 2019, 887, 5-11.	1.8	3
255	Divergent Reactivity of Phosphapalladacycles toward E–H (E = N, P, As) Bonds. Organometallics, 2020, 39, 182-188.	2.3	3
256	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylphosphole and Sulfoxide. Organometallics, 2015, 34, 5081-5087.	2.3	2
257	Isolation of Phosphinoiminoâ€2â€imidazoline. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1264-1268.	1.2	2
258	Cobalt-platinum heterometallic clusters containing N-heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2017, 849-850, 48-53.	1.8	2
259	Chemoselective Synthesis and Evaluation of β-Oxovinylarsines as an Arsenic Synthetic Precursor. Organometallics, 2020, 39, 271-278.	2.3	2
260	Catalytic access to ferrocenyl phosphines bearing both planar and central chirality – A kinetic resolution approach via catalytic asymmetric P(III)–C bond formation. Tetrahedron, 2020, 76, 131259.	1.9	2
261	Reaction of the Decaosmium Carbido Cluster [Os10(µ6-C)(CO)24]2â^' with Halostibines. Journal of Cluster Science, 2021, 32, 929-935.	3.3	2
262	New thioether–dithiolate complexes of Cpâ^—Ir and some reactivity features. Journal of Organometallic Chemistry, 2012, 696, 4207-4214.	1.8	1
263	The Evolution of Terminal Allylphosphinidene Pentacarbonyltungsten Complex. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 908-913.	1.6	1
264	Crystal structure and Hirshfeld surface analysis of a copper(II) complex containing 2-nitrobenzoate and tetramethylethylenediamine ligands. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 412-415.	0.5	1
265	Ligand substitution in the osmium carbonyl cluster Os2(CO)8(µ3-SbPh)Os(CO)3(Cl)2: Towards derivatives of the osmostibine metalloligand. Journal of Organometallic Chemistry, 2021, 942, 121817.	1.8	1
266	Investigating the solid-state assembly of pharmaceutically-relevant N,N-dimethyl-O-thiocarbamates in the absence of labile hydrogen bonds. CrystEngComm, 2020, 22, 8290-8298.	2.6	0
267	Rutheniumâ€Based Structural Mimics of the Cofactor of [Fe]â€Hydrogenase: Replacement of the Acyl Moiety with an Nâ€Heterocyclic Carbene. ChemistrySelect, 2020, 5, 10775-10780.	1.5	0