
Bertrand Dubois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6156579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Instability Is Defined by Specific Tumor Microenvironment in Ovarian Cancer: A Subgroup Analysis of AGO OVAR 12 Trial. Cancers, 2022, 14, 1189.	3.7	3
2	Immune and Genetic Signatures of Breast Carcinomas Triggering Anti-Yo–Associated Paraneoplastic Cerebellar Degeneration. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	14
3	Neoadjuvant immune checkpoint inhibitors in cancer, current state of the art. Critical Reviews in Oncology/Hematology, 2021, 157, 103172.	4.4	8
4	IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Science Immunology, 2020, 5, .	11.9	86
5	Immunopathological characterization of ovarian teratomas associated with anti-N-methyl-D-aspartate receptor encephalitis. Acta Neuropathologica Communications, 2019, 7, 38.	5.2	62
6	Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration. Acta Neuropathologica, 2018, 135, 569-579.	7.7	73
7	Autocrine Adenosine Regulates Tumor Polyfunctional CD73+CD4+ Effector T Cells Devoid of Immune Checkpoints. Cancer Research, 2018, 78, 3604-3618.	0.9	53
8	Intestinal dendritic cell licensing through Toll-like receptor 4 is required for oral tolerance in allergic contact dermatitis. Journal of Allergy and Clinical Immunology, 2018, 141, 163-170.	2.9	24
9	Hepatitis B Virus Blocks the CRE/CREB Complex and Prevents TLR9 Transcription and Function in Human B Cells. Journal of Immunology, 2018, 201, 2331-2344.	0.8	18
10	Identification of Tertiary Lymphoid Structure-Associated Follicular Helper T Cells in Human Tumors and Tissues. Methods in Molecular Biology, 2018, 1845, 205-222.	0.9	8
11	Plasmacytoid dendritic cells are dispensable for noninfectious intestinal IgA responses in vivo. European Journal of Immunology, 2016, 46, 354-359.	2.9	8
12	Intradermal immunisation using the TLR3-ligand Poly (I:C) as adjuvant induces mucosal antibody responses and protects against genital HSV-2 infection. Npj Vaccines, 2016, 1, 16010.	6.0	24
13	Mouse and Human Liver Contain Immunoglobulin A–Secreting Cells Originating From Peyer's Patches and Directed Against Intestinal Antigens. Gastroenterology, 2016, 151, 311-323.	1.3	65
14	Cancer-Associated Tertiary Lymphoid Structures, from Basic Knowledge Toward Therapeutic Target in Clinic. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 99-125.	0.1	0
15	Intradermal vaccination with un-adjuvanted sub-unit vaccines triggers skin innate immunity and confers protective respiratory immunity in domestic swine. Vaccine, 2016, 34, 914-922.	3.8	18
16	Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment. Cancer Research, 2013, 73, 4629-4640.	0.9	164
17	Invariant NKT Cells Suppress CD8+ T-Cell–Mediated Allergic Contact Dermatitis Independently of Regulatory CD4+ T Cells. Journal of Investigative Dermatology, 2013, 133, 980-987.	0.7	40
18	S1PR5 is pivotal for the homeostasis of patrolling monocytes. European Journal of Immunology, 2013, 43, 1667-1675.	2.9	49

Bertrand Dubois

#	Article	IF	CITATIONS
19	Comparative histology and immunohistochemistry of porcine versus human skin. European Journal of Dermatology, 2013, 23, 456-466.	0.6	143
20	Regulatory CD4+Foxp3+ T Cells Control the Severity of Anaphylaxis. PLoS ONE, 2013, 8, e69183.	2.5	21
21	Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. Journal of Clinical Investigation, 2012, 122, 1700-1711.	8.2	146
22	CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood, 2011, 118, 5130-5140.	1.4	42
23	Regulatory T Cells Control Type I Food Allergy to Beta-Lactoglobulin in Mice. International Archives of Allergy and Immunology, 2011, 156, 387-396.	2.1	24
24	Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. Journal of Allergy and Clinical Immunology, 2010, 126, 280-289.e7.	2.9	143
25	Characterization of a CD44/CD122int Memory CD8 T Cell Subset Generated under Sterile Inflammatory Conditions. Journal of Immunology, 2009, 182, 3846-3854.	0.8	29
26	Sequential Role of Plasmacytoid Dendritic Cells and Regulatory T Cells in Oral Tolerance. Gastroenterology, 2009, 137, 1019-1028.	1.3	81
27	Plasmacytoid Dendritic Cells Mediate Oral Tolerance. Immunity, 2008, 29, 464-475.	14.3	333
28	Dendritic Cells Rapidly Recruited into Epithelial Tissues via CCR6/CCL20 Are Responsible for CD8+ T Cell Crosspriming In Vivo. Immunity, 2006, 24, 191-201.	14.3	336
29	Deficient Contact Hypersensitivity Reaction in CD4â^'/â^' Mice Is Because of Impaired Hapten-Specific CD8+ T Cell Functions. Journal of Investigative Dermatology, 2005, 124, 562-569.	0.7	21
30	Dynamics and Function of Langerhans Cells In Vivo. Immunity, 2005, 22, 643-654.	14.3	870
31	Critical Role of ITIM-Bearing Fcl ³ R on DCs in the Capture and Presentation of Native Antigen to B Cells. Immunity, 2005, 23, 463-464.	14.3	8
32	Flagellin Promotes Myeloid Differentiation Factor 88-Dependent Development of Th2-Type Response. Journal of Immunology, 2004, 172, 6922-6930.	0.8	283
33	<i>Lactobacilluscasei</i> reduces CD8 ⁺ T cellâ€mediated skin inflammation. European Journal of Immunology, 2004, 34, 2520-2528.	2.9	153
34	Allergic Contact Dermatitis. , 2004, , 593-613.		5
35	Allergic contact dermatitis. European Journal of Dermatology, 2004, 14, 284-95.	0.6	148
36	Innate CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T cells mediating skin inflammation. Blood, 2003, 102, 3295-3301.	1.4	163

Bertrand Dubois

#	Article	IF	CITATIONS
37	CD4+CD25+ T cells as key regulators of immune responses. European Journal of Dermatology, 2003, 13, 111-6.	0.6	27
38	Dendritic cells and viral immunity: friends or foes?. Seminars in Immunology, 2001, 13, 303-310.	5.6	22
39	Antigen Uptake by Dendritic Cells. , 2001, 64, 369-376.		6
40	Measles Virus Exploits Dendritic Cells to Suppress CD4+ T-Cell Proliferation via Expression of Surface Viral Glycoproteins Independently of T-Cell Trans-infection. Cellular Immunology, 2001, 214, 173-183.	3.0	49
41	Dendritic Cells Recruitment and In Vivo Priming of CD8+ CTL Induced by a Single Topical or Transepithelial Immunization Via the Buccal Mucosa with Measles Virus Nucleoprotein. Journal of Immunology, 2001, 167, 384-391.	0.8	37
42	Propagation of Human Dendritic Cells In Vitro. , 2001, 64, 257-273.		0
43	Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13722-13727.	7.1	334
44	B cells. , 2001, , 255-261.		0
45	Development of Minimal Lentivirus Vectors Derived from Simian Immunodeficiency Virus (SIVmac251) and Their Use for Gene Transfer into Human Dendritic Cells. Journal of Virology, 2000, 74, 8307-8315.	3.4	132
46	Respective involvement of TGF-Î ² and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. Journal of Leukocyte Biology, 1999, 66, 781-791.	3.3	128
47	Dendritic cells directly modulate B cell growth and differentiation. Journal of Leukocyte Biology, 1999, 66, 224-230.	3.3	129
48	Dendritic Cells Enhance the Differentiation of Naive B Cells into Plasma Cells In Vitro. Scandinavian Journal of Immunology, 1998, 48, 563-570.	2.7	71
49	Human Dendritic Cells Skew Isotype Switching of CD40-activated Naive B Cells towards IgA1 and IgA2. Journal of Experimental Medicine, 1997, 185, 1909-1918.	8.5	229
50	Dendritic Cells Enhance Growth and Differentiation of CD40-activated B Lymphocytes. Journal of Experimental Medicine, 1997, 185, 941-952.	8.5	291
51	CD34+ Hematopoietic Progenitors From Human Cord Blood Differentiate Along Two Independent Dendritic Cell Pathways in Response to Granulocyte-Macrophage Colony-Stimulating Factor Plus Tumor Necrosis Factor α: II. Functional Analysis. Blood, 1997, 90, 1458-1470.	1.4	394
52	Human Dendritic/Langerhans Cells Control Growth and Differentiation of CD40 Activated B Cells. Advances in Experimental Medicine and Biology, 1997, 417, 329-334.	1.6	5
53	CD34+ Hematopoietic Progenitors From Human Cord Blood Differentiate Along Two Independent Dendritic Cell Pathways in Response to Granulocyte-Macrophage Colony-Stimulating Factor Plus Tumor Necrosis Factor α: II. Functional Analysis. Blood, 1997, 90, 1458-1470.	1.4	40
54	In vitro regulation of development and function of dendritic cells. Hematology and Cell Therapy, 1996, 38, 463-463.	0.7	8

#	Article	IF	CITATIONS
55	Human Dendritic Cells Enhance Growth and Differentiation of CD40 Activated B Cells. Advances in Experimental Medicine and Biology, 1995, 378, 397-399.	1.6	6
56	Human Dendritic Cells Can Drive CD40-Activated slgD+ B Cells to Mount Mucosal-Type Humoral Response. Advances in Experimental Medicine and Biology, 1995, 378, 401-403.	1.6	4
57	Activation of human dendritic cells through CD40 cross-linking Journal of Experimental Medicine, 1994, 180, 1263-1272.	8.5	1,246