Fuxiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6156359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4, 1432.	12.8	1,458
2	Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO ₄ . Energy and Environmental Science, 2014, 7, 1369-1376.	30.8	491
3	Cobalt-Modified Porous Single-Crystalline LaTiO ₂ N for Highly Efficient Water Oxidation under Visible Light. Journal of the American Chemical Society, 2012, 134, 8348-8351.	13.7	382
4	A Tantalum Nitride Photoanode Modified with a Holeâ€Storage Layer for Highly Stable Solar Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7295-7299.	13.8	354
5	Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2016, 191, 130-137.	20.2	344
6	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visibleâ€Lightâ€kradiation. Angewandte Chemie - International Edition, 2015, 54, 3047-3051.	13.8	254
7	Efficient Visibleâ€Lightâ€Driven Zâ€6cheme Overall Water Splitting Using a MgTa ₂ O _{6Ⱂ<i>x</i>} N _{<i>y</i>} /TaON Heterostructure Photocatalyst for H ₂ Evolution. Angewandte Chemie - International Edition, 2015, 54, 8498-8501.	13.8	252
8	Water oxidation on a mononuclear manganese heterogeneous catalyst. Nature Catalysis, 2018, 1, 870-877.	34.4	244
9	High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO catalyst with fine silver clusters. Journal of Catalysis, 2005, 232, 424-431.	6.2	236
10	Size-Controlled Synthesis of Magnetite (Fe ₃ O ₄) Nanoparticles Coated with Glucose and Gluconic Acid from a Single Fe(III) Precursor by a Sucrose Bifunctional Hydrothermal Method. Journal of Physical Chemistry C, 2009, 113, 16002-16008.	3.1	227
11	Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature. Nano Letters, 2011, 11, 3649-3655.	9.1	188
12	Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Applied Catalysis B: Environmental, 2003, 46, 341-351.	20.2	169
13	Synergetic Effect of Conjugated Ni(OH) ₂ /IrO ₂ Cocatalyst on Titanium-Doped Hematite Photoanode for Solar Water Splitting. Journal of Physical Chemistry C, 2015, 119, 19607-19612.	3.1	167
14	Visibleâ€Lightâ€Responsive 2D Cadmium–Organic Framework Single Crystals with Dual Functions of Water Reduction and Oxidation. Advanced Materials, 2018, 30, e1803401.	21.0	157
15	Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13, 484.	12.8	156
16	Surface Strategies for Particulate Photocatalysts toward Artificial Photosynthesis. Joule, 2018, 2, 2260-2288.	24.0	146
17	Scalable Low-Band-Gap Sb ₂ Se ₃ Thin-Film Photocathodes for Efficient Visible–Near-Infrared Solar Hydrogen Evolution. ACS Nano, 2017, 11, 12753-12763.	14.6	127
18	Synthesis of Titania-Supported Platinum Catalyst:Â The Effect of pH on Morphology Control and Valence State during Photodeposition. Langmuir, 2004, 20, 9329-9334.	3.5	123

#	Article	IF	CITATIONS
19	Redox-Based Visible-Light-Driven Z-Scheme Overall Water Splitting with Apparent Quantum Efficiency Exceeding 10%. Joule, 2018, 2, 2393-2402.	24.0	121
20	Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. Journal of Catalysis, 2013, 307, 148-152.	6.2	118
21	Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate. Catalysis Today, 2004, 90, 331-336.	4.4	116
22	Heterostructure of 1D Ta ₃ N ₅ Nanorod/BaTaO ₂ N Nanoparticle Fabricated by a Oneâ€6tep Ammonia Thermal Route for Remarkably Promoted Solar Hydrogen Production. Advanced Materials, 2019, 31, e1808185.	21.0	115
23	Composite Sr2TiO4/SrTiO3(La,Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 7905.	10.3	114
24	Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta ₃ N ₅ as a H ₂ -evolving photocatalyst. Chemical Science, 2017, 8, 437-443.	7.4	110
25	Water-Stable Nickel Metal–Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. Journal of the American Chemical Society, 2022, 144, 2747-2754.	13.7	109
26	Synthesis and Demonstration of Subnanometric Iridium Oxide as Highly Efficient and Robust Water Oxidation Catalyst. ACS Catalysis, 2017, 7, 5983-5986.	11.2	100
27	Unexpected Selective Photocatalytic Reduction of Nitrite to Nitrogen on Silver-Doped Titanium Dioxide. Journal of Physical Chemistry C, 2007, 111, 3756-3761.	3.1	98
28	Photocatalytic reduction of nitrate ion in drinking water by using metal-loaded MgTiO3-TiO2 composite semiconductor catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 585-590.	3.9	89
29	Nitrogen-doped layered oxide Sr5Ta4O15â^'xNx for water reduction and oxidation under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 5651.	10.3	89
30	Control of Morphology of Silver Clusters Coated on Titanium Dioxide during Photocatalysis. Langmuir, 2003, 19, 8230-8234.	3.5	88
31	Selective photocatalytic conversion of glycerol to hydroxyacetaldehyde in aqueous solution on facet tuned TiO ₂ -based catalysts. Chemical Communications, 2014, 50, 165-167.	4.1	83
32	A wide visible-light-responsive tunneled MgTa ₂ O _{6â^'x} N _x photocatalyst for water oxidation and reduction. Chemical Communications, 2014, 50, 14415-14417.	4.1	75
33	Size-Dependent Hydrogenation Selectivity of Nitrate on Pdâ^'Cu/TiO ₂ Catalysts. Journal of Physical Chemistry C, 2008, 112, 7665-7671.	3.1	72
34	Species, engineering and characterizations of defects in TiO 2 -based photocatalyst. Chinese Chemical Letters, 2018, 29, 671-680.	9.0	67
35	An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. Journal of Catalysis, 2016, 338, 168-173.	6.2	66
36	Facile Postsynthesis of Visible-Light-Sensitive Titanium Dioxide/Mesoporous SBA-15. Chemistry of Materials, 2007, 19, 3286-3293.	6.7	63

#	Article	IF	CITATIONS
37	Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. Journal of Catalysis, 2016, 339, 77-83.	6.2	62
38	NO SCR with propane and propene on Co-based alumina catalysts prepared by co-precipitation. Applied Catalysis B: Environmental, 2007, 73, 209-219.	20.2	59
39	CoO _x nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst. Chemical Science, 2017, 8, 6111-6116.	7.4	59
40	Heterostructured MOFs photocatalysts for water splitting to produce hydrogen. Journal of Energy Chemistry, 2021, 58, 508-522.	12.9	58
41	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	18.8	57
42	Nanostructure Engineering and Modulation of (Oxy)Nitrides for Application in Visibleâ€Lightâ€Driven Water Splitting. Advanced Materials, 2021, 33, e2004697.	21.0	55
43	Effect of post-treatments on the photocatalytic activity of Sm2Ti2S2O5 for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 12051.	2.8	53
44	Direct synthesis of zeolite coatings on cordierite supports by in situ hydrothermal method. Applied Catalysis A: General, 2005, 292, 312-321.	4.3	52
45	Catalytic reduction of nitrite ions in drinking water over Pd–Cu/TiO2 bimetallic catalyst. Catalysis Today, 2004, 93-95, 333-339.	4.4	51
46	NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catalysis Communications, 2008, 9, 1827-1832.	3.3	51
47	Synergetic effect of dual cocatalysts in photocatalytic H ₂ production on Pd–IrO _x /TiO ₂ : a new insight into dual cocatalyst location. Physical Chemistry Chemical Physics, 2014, 16, 17734.	2.8	51
48	One-pot synthesis of BaMg1/3Ta2/3O3-xNy/Ta3N5 heterostructures as H2-evolving photocatalysts for construction of visible-light-driven Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2019, 241, 1-7.	20.2	51
49	Electrochemical synthesis of ammonia: Progress and challenges. Materials Today Physics, 2021, 16, 100310.	6.0	50
50	Development of a bismuth-based metal-organic framework for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019, 40, 1339-1344.	14.0	49
51	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visible‣ightâ€Irradiation. Angewandte Chemie, 2015, 127, 3090-3094.	2.0	48
52	β-Cyclodextrin-Assisted Synthesis of Superparamagnetic Magnetite Nanoparticles from a Single Fe(III) Precursor. Journal of Physical Chemistry C, 2008, 112, 17148-17155.	3.1	46
53	Modification of oxysulfides with two nanoparticulate cocatalysts to achieve enhanced hydrogen production from water with visible light. Chemical Communications, 2010, 46, 7313.	4.1	46
54	Synthesis of BaTaO ₂ N oxynitride from Ba-rich oxide precursor for construction of visible-light-driven Z-scheme overall water splitting. Dalton Transactions, 2017, 46, 10707-10713.	3.3	45

Fuxiang Zhang

#	Article	IF	CITATIONS
55	Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst. Catalysis Communications, 2007, 8, 583-588.	3.3	42
56	Simple and low-cost preparation method for highly dispersed Pd/TiO2 catalysts. Catalysis Today, 2004, 93-95, 645-650.	4.4	41
57	Sulfurization-Assisted Cobalt Deposition on Sm ₂ Ti ₂ S ₂ O ₅ Photocatalyst for Water Oxidation under Visible Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 376-382.	3.1	40
58	Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications. Transactions of Tianjin University, 2022, 28, 33-52.	6.4	40
59	Selective Catalytic Reduction of Nitrogen Oxides from Exhaust of Lean Burn Engine over In-Situ Synthesized Cuâ^'ZSM-5/Cordierite. Environmental Science & Technology, 2005, 39, 2841-2847.	10.0	38
60	Development of Novel Perovskite‣ike Oxide Photocatalyst LiCuTa ₃ O ₉ with Dual Functions of Water Reduction and Oxidation under Visible Light Irradiation. Advanced Energy Materials, 2018, 8, 1801660.	19.5	38
61	Development of Mixedâ€Anion Photocatalysts with Wide Visible‣ight Absorption Bands for Solar Water Splitting. ChemSusChem, 2019, 12, 1872-1888.	6.8	36
62	Para-selectivity of modified HZSM-5 zeolites by nitridation for ethylation of ethylbenzene with ethanol. Journal of Molecular Catalysis A, 2006, 248, 220-225.	4.8	34
63	Amorphous Cobalt Oxide Nanoparticles as Active Waterâ€Oxidation Catalysts. ChemCatChem, 2017, 9, 3641-3645.	3.7	34
64	Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2018, 224, 579-585.	20.2	33
65	Synthesis and Characterization of N-doped TiO2 Nanowires with Visible Light Response. Catalysis Letters, 2009, 129, 507-512.	2.6	31
66	Insight into the structure and localization of the titania overlayer in TiO2-coated SBA-15 materials. New Journal of Chemistry, 2010, 34, 508.	2.8	31
67	Improvement of the photocatalytic hydrogen evolution activity of Sm2Ti2S2O5 under visible light by metal ion additives. Journal of Catalysis, 2011, 280, 1-7.	6.2	31
68	Metal-seed assistant photodeposition of platinum over Ta3N5 photocatalyst for promoted solar hydrogen production under visible light. Journal of Energy Chemistry, 2021, 55, 444-448.	12.9	27
69	Using Pd as a Cocatalyst on GaN–ZnO Solid Solution for Visible-Light-Driven Overall Water Splitting. Catalysis Letters, 2018, 148, 933-939.	2.6	26
70	Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
71	Long-Lived Internal Charge-Separated State in Two-Dimensional Metal–Organic Frameworks Improving Photocatalytic Performance. ACS Energy Letters, 2022, 7, 2323-2330.	17.4	24
72	Synthesis of Anatase TiO2 Nanoparticles with β-Cyclodextrin as a Supramolecular Shell. Chemistry - an Asian Journal, 2006, 1, 664-668.	3.3	23

#	Article	IF	CITATIONS
73	Investigation of cocatalysts on silver-modified Sm2Ti2S2O5 photocatalyst for water reduction and oxidation under visible light irradiation. Catalysis Today, 2012, 185, 253-258.	4.4	21
74	Energy Analysis of Cascade Heating with High Back-Pressure Large-Scale Steam Turbine. Energies, 2018, 11, 119.	3.1	21
75	A wide visible light driven complex perovskite Ba(Mg _{1/3} Ta _{2/3})O _{3â^'x} N _y photocatalyst for water oxidation and reduction. Journal of Materials Chemistry A, 2017, 5, 18870-18877.	10.3	20
76	Strategies and Methods of Modulating Nitrogen-Incorporated Oxide Photocatalysts for Promoted Water Splitting. Accounts of Materials Research, 2022, 3, 449-460.	11.7	20
77	Synthesis and characterization of a basic molecular sieve: Nitrogen-incorporated SAPO-34. Materials Letters, 2006, 60, 3141-3144.	2.6	18
78	Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385 nm monochromatic light irradiation. Chinese Journal of Catalysis, 2020, 41, 598-603.	14.0	17
79	Alkali-mediated dissolution-recrystallization strategy for in situ construction of a BiVO4/Bi25VO40 heterojunction with promoted interfacial charge transfer: Formation mechanism and photocatalytic tetracycline degradation studies. Chemical Engineering Journal, 2022, 431, 134181.	12.7	17
80	Application of Xâ€Ray Absorption Spectroscopy in Electrocatalytic Water Splitting and CO ₂ Reduction. Small Science, 2021, 1, 2100023.	9.9	16
81	Titania-Supported Pd–Cu Bimetallic Catalyst for the Reduction of Nitrite Ions in Drinking Water. Catalysis Letters, 2003, 91, 25-30.	2.6	14
82	Physico-chemical characterization of nitrided mesoporous silicon MCM-41. Microporous and Mesoporous Materials, 2010, 135, 2-8.	4.4	14
83	A hydrated amorphous iron oxide nanoparticle as active water oxidation catalyst. Chinese Journal of Catalysis, 2019, 40, 38-42.	14.0	14
84	Water-stable Mn-based MOF nanosheet as robust visible-light-responsive photocatalyst in aqueous solution. Science China Chemistry, 2020, 63, 1756-1760.	8.2	14
85	Synthesis of a Visibleâ€Lightâ€Responsive Perovskite SmTiO ₂ N Bifunctional Photocatalyst via an Evaporationâ€Assisted Layeredâ€Precursor Strategy. Advanced Materials, 2021, 33, e2101883.	21.0	14
86	Heterostructure of Ta3N5 nanorods and CaTaO2N nanosheets fabricated using a precursor template to boost water splitting under visible light. Journal of Energy Chemistry, 2022, 67, 27-33.	12.9	14
87	Recent progress on photocatalysts with wide visible light range absorption for heterogeneous water splitting. Chinese Journal of Catalysis, 2014, 35, 1431-1432.	14.0	13
88	Investigation on the Influence of Sc Ions Doping on the Structure and Performance of Ta 3 N 5 Photocatalyst for Water Oxidation under Visible Light Irradiation. Solar Rrl, 2020, 4, 1900445.	5.8	13
89	Synthesis of perovskite BaTaO2N with low defect by Zn doping for boosted photocatalytic water reduction. Journal of Energy Chemistry, 2021, 63, 358-363.	12.9	13
90	Synthesis of Nickel Nitrideâ€Based 1D/0D Heterostructure via a Morphologyâ€Inherited Nitridation Strategy for Efficient Electrocatalytic Hydrogen Evolution. Small, 2022, 18, .	10.0	13

#	Article	IF	CITATIONS
91	Ir/ZSM-5/cordierite monolith for catalytic NOx reduction from automobile exhaust. Catalysis Communications, 2008, 9, 409-415.	3.3	12
92	Electronic Engineering of ABO ₃ Perovskite Metal Oxides Based on <i>d</i> ⁰ Electronic onfiguration Metallic Ions toward Photocatalytic Water Splitting under Visible Light. Small Structures, 2022, 3, .	12.0	12
93	Long-lived excited states of platinum(<scp>ii</scp>)-porphyrins for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 13402-13409.	10.3	12
94	Selective catalytic reduction of nitric oxide with propane over Ni-Al2O3: effect of Ni loading. Reaction Kinetics and Catalysis Letters, 2006, 89, 81-87.	0.6	11
95	Fluxâ€Assisted Synthesis of Prismâ€like Octahedral Ta ₃ N ₅ Singleâ€Crystals with Controllable Facets for Promoted Photocatalytic H ₂ Evolution. Solar Rrl, 2021, 5, 2000574.	5.8	10
96	Development of Sn2+-based oxyfluoride photocatalyst with visible light response of ca. 650Ânm via strengthened hybridization of Sn 5s and O 2p orbitals. Journal of Energy Chemistry, 2021, 63, 385-390.	12.9	9
97	Water-Stable Cobalt-Based MOF for Water Oxidation in Neutral Aqueous Solution: A Case of Mimicking the Photosystem II. Inorganic Chemistry, 2021, 60, 1790-1796.	4.0	8
98	Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15â^'xNx as a visible-light-responsive photocatalyst for water oxidation. Nano Research, 2022, 15, 9976-9984.	10.4	8
99	Engineering Efficient Nilr _{<i>x</i>} /CNT Hybrid Nanostructures for pH-Universal Oxygen Evolution. Journal of Physical Chemistry C, 2021, 125, 26003-26012.	3.1	6
100	Understanding the morphology evolution of 1D BiVO ₄ nanoarrays from nanorods to nanocones with enhanced photocatalytic performance. CrystEngComm, 2022, 24, 3297-3306.	2.6	6
101	Defect Management of SrNbO ₂ N through Zn Modification for Promoted Photocatalytic Water Oxidation. Energy & Fuels, 2022, 36, 11477-11484.	5.1	6
102	Photocatalytic Water Splitting for Hydrogen Production [※] . Acta Chimica Sinica, 2022, 80, 827.	1.4	6
103	Sub-2 nm cobalt oxide cluster catalyst supported on alumina for efficient water oxidation. Applied Catalysis A: General, 2016, 521, 154-159.	4.3	5
104	Overall water splitting over conjugated polymer photocatalysts with crystal facets modulated. Science China Chemistry, 2020, 63, 1582-1583.	8.2	5
105	Artificial Photosynthesis near the Biological Limit. Joule, 2020, 4, 1364-1366.	24.0	5
106	Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie, 2022, 134, .	2.0	5
107	Influences of Mesoporous Structure on the NO+H2+O2 Low Temperature Reaction over Pt/Si-MCM-41 Catalyst. Acta Physico-chimica Sinica, 2008, 24, 369-374.	0.6	4
108	Semiconductor monolayer assemblies with oriented crystal faces. CrystEngComm, 2012, 14, 59-62.	2.6	4

#	Article	IF	CITATIONS
109	Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one. Science China Chemistry, 2020, 63, 771-776.	8.2	4
110	Tip-induced directional charge separation on one-dimensional BiVO4 nanocones for asymmetric light absorption. Journal of Energy Chemistry, 2022, 72, 326-332.	12.9	4
111	Synthesis of a novel nitrogen-doped K2Ti6O13 nanorod with visible-light-driven water splitting performance promoted by fabrication of 1D/2D heterostructure. Applied Surface Science, 2022, 581, 152345.	6.1	3
112	Semiconductor-Based Photocatalytic Water Splitting. Lecture Notes in Energy, 2016, , 299-317.	0.3	2
113	Dualâ€Modified Hollow Spherical Shell MoS 2 @TiO 2 /TiN Composites for Photocatalytic Hydrogen Production. Energy Technology, 0, , 2100265.	3.8	2
114	Density Functional Theory Study of Nitridation of ZSM-5 Zeolite. Chinese Journal of Catalysis, 2008, 29, 203-205.	14.0	1
115	Nitrided BaO-MCM-41 as a new mesoporous basic material. Studies in Surface Science and Catalysis, 2007, 165, 91-94.	1.5	0
116	Modification of $Sm < inf > 2 < /inf > Ti < inf > 2 < /inf > S < inf > 2 < /inf > O < inf > 5 < /inf > with two cocatalysts for$		0

116 remarkably enhanced hydrogen production from water using visible light. , 2010, , .

8