
Derek G Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocelluloses: A New Family of Natureâ€Based Materials. Angewandte Chemie - International Edition, 2011, 50, 5438-5466.	7.2	3,550
2	Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules, 2005, 6, 1048-1054.	2.6	1,369
3	Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose, 1998, 5, 19-32.	2.4	895
4	Effects of Ionic Strength on the Isotropicâ^'Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites. Langmuir, 1996, 12, 2076-2082.	1.6	672
5	Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. Journal of Colloid and Interface Science, 1980, 77, 353-362.	5.0	545
6	Cationic surface functionalization of cellulose nanocrystals. Soft Matter, 2008, 4, 2238-2244.	1.2	494
7	Bactericidal Paper Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment. Environmental Science & Technology, 2011, 45, 1992-1998.	4.6	461
8	Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liquid Crystals, 1994, 16, 127-134.	0.9	416
9	Liquid Crystalline Structure In Aqueous Hydroxypropyl Cellulose Solutions. Molecular Crystals and Liquid Crystals, 1976, 34, 97-103.	0.9	362
10	Morphological and Optical Characterization of Polyelectrolyte Multilayers Incorporating Nanocrystalline Cellulose. Biomacromolecules, 2006, 7, 2522-2530.	2.6	339
11	Ordered Phase Formation in Concentrated Hydroxpropylcellulose Solutions. Macromolecules, 1980, 13, 69-73.	2.2	325
12	Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites. Langmuir, 1997, 13, 2404-2409.	1.6	258
13	Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose, 2013, 20, 785-794.	2.4	226
14	Surface Grafting of Cellulose Nanocrystals with Poly(ethylene oxide) in Aqueous Media. Langmuir, 2010, 26, 13450-13456.	1.6	219
15	SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose, 2012, 19, 1599-1605.	2.4	212
16	Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose, 2007, 14, 109-113.	2.4	196
17	Cellulose Crystallites. Chemistry - A European Journal, 2001, 7, 1831-1836.	1.7	192
18	Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter, 2011, 7, 2373.	1.2	189

#	Article	IF	CITATIONS
19	Title is missing!. Cellulose, 1997, 4, 209-220.	2.4	187
20	Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer, 1992, 33, 4639-4642.	1.8	178
21	Formation of Chiral Nematic Films from Cellulose Nanocrystal Suspensions Is a Two-Stage Process. Langmuir, 2014, 30, 9256-9260.	1.6	178
22	Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules, 1994, 27, 210-215.	2.2	177
23	Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose, 2003, 10, 299-306.	2.4	176
24	Adsorption, spreading pressure, and london force interactions of hydrocarbons on cellulose and wood fiber surfaces. Journal of Colloid and Interface Science, 1979, 71, 93-106.	5.0	156
25	Cellulose Crystallites:Â A New and Robust Liquid Crystalline Medium for the Measurement of Residual Dipolar Couplings. Journal of the American Chemical Society, 2000, 122, 5224-5225.	6.6	150
26	Birefringence in spin-coated films containing cellulose nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 325, 44-51.	2.3	147
27	Optical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentration. Macromolecules, 1984, 17, 1512-1520.	2.2	143
28	Cholesteric liquid crystalline phases based on (acetoxypropyl)cellulose. Macromolecules, 1981, 14, 715-719.	2.2	141
29	Parabolic Focal Conics in Self-Assembled Solid Films of Cellulose Nanocrystals. Langmuir, 2005, 21, 5555-5561.	1.6	125
30	Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals. Langmuir, 2018, 34, 3925-3933.	1.6	120
31	Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Science and Technology of Advanced Materials, 2006, 7, 319-321.	2.8	117
32	Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose, 2008, 15, 297-301.	2.4	113
33	Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films. Nanomaterials, 2016, 6, 213.	1.9	102
34	Induced Circular Dichroism of Isotropic and Magnetically-Oriented Chiral Nematic Suspensions of Cellulose Crystallites. Langmuir, 1997, 13, 3029-3034.	1.6	100
35	Structural and Mechanical Properties of Polyelectrolyte Multilayer Films Studied by AFM. Macromolecules, 2003, 36, 8819-8824.	2.2	100
36	Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D "coffee-stain―rings. Cellulose, 2015, 22, 1103-1107.	2.4	99

#	Article	IF	CITATIONS
37	Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy. Materials, 2015, 8, 7873-7888.	1.3	91
38	Influence of Dextran on the Phase Behavior of Suspensions of Cellulose Nanocrystals. Macromolecules, 2002, 35, 7400-7406.	2.2	89
39	Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose, 2014, 21, 2567-2577.	2.4	88
40	The adsorption of hydrocarbons on cellophane. Journal of Colloid and Interface Science, 1981, 82, 318-325.	5.0	86
41	Solid cholesteric films cast from aqueous (hydroxypropyl)cellulose. Macromolecules, 1987, 20, 33-38.	2.2	86
42	The surface tension of aqueous hydroxypropyl cellulose solutions. Journal of Colloid and Interface Science, 1978, 67, 255-265.	5.0	84
43	Contact Angle Measurements on Smooth Nanocrystalline Cellulose (I) Thin Films. Journal of Adhesion Science and Technology, 2011, 25, 699-708.	1.4	83
44	The propanoate ester of (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures. Macromolecules, 1982, 15, 1262-1264.	2.2	81
45	The preparation of O-methyl- and O-ethyl-celluloses having controlled distribution of substituents. Carbohydrate Research, 1991, 220, 173-183.	1.1	81
46	Gas chromatographic measurements of polymer structure and interactions. Progress in Polymer Science, 1977, 5, 1-60.	11.8	80
47	Friction and forces between cellulose model surfaces: A comparison. Journal of Colloid and Interface Science, 2006, 303, 117-123.	5.0	79
48	Cellulose Nanocrystals Incorporating Fluorescent Methylcoumarin Groups. ACS Sustainable Chemistry and Engineering, 2013, 1, 1160-1164.	3.2	78
49	Induced Circular Dichroism of Chiral Nematic Cellulose Films. Cellulose, 2001, 8, 5-12.	2.4	76
50	Chemical characteristics of cellulosic liquid crystals. Faraday Discussions of the Chemical Society, 1985, 79, 257.	2.2	70
51	Homogeneous alkylation of cellulose in lithium chloride/dimethyl sulfoxide solvent with dimsyl sodium activation. A proposal for the mechanism of cellulose dissolution in LiCl/Me2SO. Carbohydrate Research, 1995, 268, 319-323.	1.1	70
52	A ³ -Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein Journal of Organic Chemistry, 2013, 9, 1388-1396.	1.3	67
53	Surface Forces Measurements of Spin-Coated Cellulose Thin Films with Different Crystallinity. Langmuir, 2006, 22, 3154-3160.	1.6	66
54	Direct Surface Force Measurements of Polyelectrolyte Multilayer Films Containing Nanocrystalline Cellulose. Langmuir, 2010, 26, 17190-17197.	1.6	59

#	Article	IF	CITATIONS
55	Gelation of cellulose nanocrystal suspensions in glycerol. Cellulose, 2012, 19, 687-694.	2.4	59
56	Chiroptical behavior of (acetyl)(ethyl)cellulose liquid-crystalline solutions in chloroform. Macromolecules, 1989, 22, 2086-2090.	2.2	55
57	Fluorescence emission from mechanical pulp sheets. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 73, 59-65.	2.0	53
58	Functionalization of cellulose nanocrystal films via "thiol–ene―click reaction. RSC Advances, 2014, 4, 6965.	1.7	53
59	Interfacial Tension between Isotropic and Anisotropic Phases of a Suspension of Rodlike Particles. Langmuir, 2002, 18, 633-637.	1.6	50
60	Induced Phase Separation in Low-Ionic-Strength Cellulose Nanocrystal Suspensions Containing High-Molecular-Weight Blue Dextrans. Langmuir, 2006, 22, 8690-8695.	1.6	44
61	Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals. Cellulose, 2017, 24, 1287-1293.	2.4	43
62	Liquid crystalline phase transition of a semiflexible polymer: acetoxypropyl cellulose. Macromolecules, 1985, 18, 1753-1759.	2.2	42
63	Preparation and chiroptical properties of tritylated cellulose derivatives. Macromolecules, 1990, 23, 1452-1457.	2.2	42
64	Cholesteric order in gels and films of regenerated cellulose. Biopolymers, 1988, 27, 1363-1374.	1.2	41
65	Cholesteric properties of cellulose acetate and triacetate in trifluoroacetic acid. Macromolecules, 1988, 21, 2914-2917.	2.2	41
66	Facile method for the preparation of tri-O-(alkyl)cellulose. Journal of Applied Polymer Science, 1992, 45, 417-423.	1.3	41
67	AFM of adsorbed polyelectrolytes on cellulose I surfaces spin-coated on silicon wafers. Cellulose, 2005, 12, 127-134.	2.4	41
68	Circular reflectivity from the cholesteric liquid crystalline phase of (2-ethoxypropyl)cellulose. Macromolecules, 1988, 21, 1251-1255.	2.2	40
69	Optical properties of (acetoxypropyl)cellulose mesophases: factors influencing the cholesteric pitch. Polymer, 1985, 26, 1435-1442.	1.8	39
70	Adsorption of n-alkanes on carbon fibers at zero surface coverage. Langmuir, 1988, 4, 743-748.	1.6	39
71	Preparation and liquid-crystalline properties of (acetyl)(ethyl)cellulose. Macromolecules, 1989, 22, 2082-2086.	2.2	39
72	Title is missing!. Die Makromolekulare Chemie, 1983, 184, 1727-1740.	1.1	36

#	Article	IF	CITATIONS
73	Electron microscopic evidence for cholesteric structure in films of cellulose and cellulose acetate. Biopolymers, 1988, 27, 1999-2004.	1.2	36
74	Triphase Equilibria in Cellulose Nanocrystal Suspensions Containing Neutral and Charged Macromolecules. Macromolecules, 2007, 40, 3429-3436.	2.2	36
75	CdSe/ZnS QDs Embedded in Cellulose Triacetate Films with Hydrophilic Surfaces. Chemistry of Materials, 2007, 19, 4270-4276.	3.2	33
76	Order and gelation of cellulose nanocrystal suspensions: an overview of some issues. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170038.	1.6	33
77	Surface characterization of poly(ethylene terephthalate) film by inverse gas chromatography. Journal of Applied Polymer Science, 1982, 27, 71-78.	1.3	31
78	Gas Chromatographic and Static Measurements of Solute Activity for a Polymeric Liquid-Crystalline Phase. Macromolecules, 1979, 12, 562-566.	2.2	30
79	Protein alignment using cellulose nanocrystals: practical considerations and range of application. Journal of Biomolecular NMR, 2010, 47, 195-204.	1.6	30
80	Induced phase separation in cellulose nanocrystal suspensions containing ionic dye species. Cellulose, 2006, 13, 629-635.	2.4	26
81	Critical comparison of methods for surface coverage by extractives and lignin in pulps by X-ray photoelectron spectroscopy (XPS). Holzforschung, 2006, 60, 149-155.	0.9	26
82	Composition of lignocellulosic surfaces: comments on the interpretation of XPS spectra. Cellulose, 2010, 17, 117-124.	2.4	25
83	Viscosity measurements of dilute aqueous suspensions of cellulose nanocrystals using a rolling ball viscometer. Cellulose, 2012, 19, 1557-1565.	2.4	25
84	Liquid crystal formation from the benzoic acid ester of hydroxypropylcellulose. Die Makromolekulare Chemie Rapid Communications, 1982, 3, 449-455.	1.1	24
85	Isolation and handedness of helical coiled cellulosic thickenings from plant petiole tracheary elements. Cellulose, 2014, 21, 3181-3191.	2.4	23
86	Induced CD provides evidence for helical solution conformation in cellulosic chains. Biopolymers, 1988, 27, 479-491.	1.2	22
87	Incorporation into paper of cellulose triacetate films containing semiconductor nanoparticles. Cellulose, 2009, 16, 319-326.	2.4	22
88	Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. Journal of Applied Polymer Science, 2011, 119, 803-810.	1.3	22
89	Twist–Bend Stage in the Relaxation of Sheared Chiral Nematic Suspensions of Cellulose Nanocrystals. ACS Omega, 2016, 1, 212-219.	1.6	21
90	A Method To Preserve the Chiral Nematic Order of Lyotropic Ethylcellulose and (Acetyl)(ethyl)cellulose Mesophases in Solid Films. Chemistry of Materials, 1998, 10, 1720-1726.	3.2	20

#	Article	IF	CITATIONS
91	Chiroptical filters from aqueous (hydroxypropyl) cellulose liquid crystals. Journal of Applied Polymer Science, 1989, 37, 2517-2527.	1.3	18
92	Cellulose nanocrystal research; A personal perspective. Carbohydrate Polymers, 2020, 250, 116888.	5.1	16
93	In Situ Preparation of Silver Nanoparticles in Paper by Reduction with Alkaline Glucose Solutions. ACS Omega, 2018, 3, 9449-9452.	1.6	15
94	Chiral Characteristics of Thin Wood Sections. Holzforschung, 1997, 51, 1-5.	0.9	13
95	Properties of Carbon Fiber Surfaces. ACS Symposium Series, 1989, , 168-184.	0.5	9
96	A matrix method for modelling liquid crystal textures. Liquid Crystals, 1993, 13, 23-30.	0.9	7
97	Polyelectrolyte Multilayer Films Containing Cellulose: A Review. ACS Symposium Series, 2010, , 95-114.	0.5	7
98	Model Cellulose I Surfaces: A Review. ACS Symposium Series, 2010, , 75-93.	0.5	5
99	Isolation and utilization of cellulosic elements from the plant cell wall. Botany, 2020, 98, 77-80.	0.5	4
100	Optical rotatory dispersion from liquid crystalline solutions and films of hydroxypropylcellulose. Liquid Crystals, 1989, 6, 717-726.	0.9	3
101	High-resolution solid-state 13C NMR study of ethylcellulose films. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 671-676.	2.4	3
102	Surface Properties of Cellulose and Wood Fibers. ACS Symposium Series, 1982, , 421-434.	0.5	2
103	Preface to the International Chemical Congress of Pacific Basin Societies (Pacifichem2005). Science and Technology of Advanced Materials, 2006, 7, 303-304.	2.8	0