
Stephen K Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic variation that determines <i>TAPBP</i> expression levels associates with the course of malaria in an HLA allotype-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
2	Nitric Oxide Modulates Metabolic Processes in the Tumor Immune Microenvironment. International Journal of Molecular Sciences, 2021, 22, 7068.	4.1	21
3	Ascorbic Acid Promotes KIR Demethylation during Early NK Cell Differentiation. Journal of Immunology, 2020, 205, 1513-1523.	0.8	12
4	Genetic and Epigenetic Regulation of the Smoothened Gene (SMO) in Cancer Cells. Cancers, 2020, 12, 2219.	3.7	7
5	Tuning of human NK cells by endogenous HLA-C expression. Immunogenetics, 2020, 72, 205-215.	2.4	20
6	Minimal PD-1 expression in mouse and human NK cells under diverse conditions. Journal of Clinical Investigation, 2020, 130, 3051-3068.	8.2	90
7	The Human TET2 Gene Contains Three Distinct Promoter Regions With Differing Tissue and Developmental Specificities. Frontiers in Cell and Developmental Biology, 2019, 7, 99.	3.7	8
8	Differential Activation of the Transcription Factor IRF1ÂUnderlies the Distinct Immune Responses Elicited by Type I and Type III Interferons. Immunity, 2019, 51, 451-464.e6.	14.3	179
9	CCR5AS lncRNA variation differentially regulates CCR5, influencing HIV disease outcome. Nature Immunology, 2019, 20, 824-834.	14.5	87
10	Understanding the tumour microâ€environment communication network from an NOS2/COX2 perspective. British Journal of Pharmacology, 2019, 176, 155-176.	5.4	26
11	Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxidants and Redox Signaling, 2019, 30, 1124-1143.	5.4	122
12	Tuning of NK-Specific HLA-C Expression by Alternative mRNA Splicing. Frontiers in Immunology, 2019, 10, 3034.	4.8	8
13	Identification of trophoblastâ€specific elements in the HLA core promoter. Hla, 2018, 92, 288-297.	0.6	8
14	Molecular evolution of elements controlling HLAâ€C expression: Adaptation to a role as a killerâ€cell immunoglobulinâ€like receptor ligand regulating natural killer cell function. Hla, 2018, 92, 271-278.	0.6	20
15	Association of TNFRSF1B Promoter Polymorphisms with Human Disease: Further Studies Examining T-Regulatory Cells Are Required. Frontiers in Immunology, 2018, 9, 443.	4.8	8
16	Identification of an elaborate NK-specific system regulating HLA-C expression. PLoS Genetics, 2018, 14, e1007163.	3.5	26
17	TET2 binds the androgen receptor and loss is associated with prostate cancer. Oncogene, 2017, 36, 2172-2183.	5.9	56
18	Abstract 4796: Chronic exposure to nitric oxide drives human breast epithelial cells to malignant-like		0

Abstract 4796: Chronic exposure to nitric oxide drives human breast epithelial cells to malignant-like features. , 2017, , . 18

#	Article	IF	CITATIONS
19	Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells. PLoS Biology, 2016, 14, e1002526.	5.6	11
20	Analysis of Ly49 gene transcripts in mature NK cells supports a role for the Pro1 element in gene activation, not gene expression. Genes and Immunity, 2016, 17, 349-357.	4.1	8
21	HLA-C Level Is Regulated by a Polymorphic Oct1 Binding Site in the HLA-C Promoter Region. American Journal of Human Genetics, 2016, 99, 1353-1358.	6.2	49
22	Characterization of KIR intermediate promoters reveals four promoter types associated with distinct expression patterns of KIR subtypes. Genes and Immunity, 2016, 17, 66-74.	4.1	25
23	Interleukin-1 and Interferon-γ Orchestrate β-Glucan-Activated Human Dendritic Cell Programming via lκB-ζ Modulation. PLoS ONE, 2014, 9, e114516.	2.5	14
24	Probabilistic Bidirectional Promoter Switches: Noncoding RNA Takes Control. Molecular Therapy - Nucleic Acids, 2014, 3, e191.	5.1	20
25	Characterization of a weakly expressed KIR2DL1 variant reveals a novel upstream promoter that controls KIR expression. Genes and Immunity, 2014, 15, 440-448.	4.1	16
26	Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity. Journal of Immunology, 2014, 192, 2875-2884.	0.8	48
27	Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. Journal of Experimental Medicine, 2014, 211, 1079-1091.	8.5	35
28	Functional NK Cell Repertoires Are Maintained through IL-2Rα and Fas Ligand. Journal of Immunology, 2014, 192, 3889-3897.	0.8	20
29	Abstract 454:TET2alterations facilitate progression of metastatic prostate cancer. , 2014, , .		0
30	Identification of a KIR antisense IncRNA expressed by progenitor cells. Genes and Immunity, 2013, 14, 427-433.	4.1	21
31	Differential Expression of the Ly49GB6, but Not the Ly49GBALB, Receptor Isoform during Natural Killer Cell Reconstitution after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 1446-1452.	2.0	3
32	LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN-Î ³ Production by Repressing Î ² -Catenin Activation in Dendritic Cells. PLoS Pathogens, 2013, 9, e1003357.	4.7	14
33	Contrasting Effects of Anti-Ly49A Due to MHC Class IcisBinding on NK Cell–Mediated Allogeneic Bone Marrow Cell Resistance. Journal of Immunology, 2013, 191, 688-698.	0.8	8
34	Epigenetic regulation of NK cell differentiation and effector functions. Frontiers in Immunology, 2013, 4, 55.	4.8	71
35	Characterization Of a Weakly Expressed KIR2DL1 Allele. Blood, 2013, 122, 4847-4847.	1.4	0
36	Functional NK Cell Repertoires Are Determined By Survival Mechanisms Through IL-2Ra and FasL. Blood, 2013, 122, 786-786.	1.4	0

3

#	Article	IF	CITATIONS
37	Promoter variants in the MSMB gene associated with prostate cancer regulate MSMB/NCOA4 fusion transcripts. Human Genetics, 2012, 131, 1453-1466.	3.8	25
38	CD8 T cells express randomly selected KIRs with distinct specificities compared with NK cells. Blood, 2012, 120, 3455-3465.	1.4	95
39	Mouse Nkrp1-Clr Gene Cluster Sequence and Expression Analyses Reveal Conservation of Tissue-Specific MHC-Independent Immunosurveillance. PLoS ONE, 2012, 7, e50561.	2.5	30
40	A novel role for IL-22R1 as a driver of inflammation. Blood, 2011, 117, 575-584.	1.4	64
41	Mouse Ly49G2+ NK cells dominate early responses during both immune reconstitution and activation independently of MHC. Blood, 2011, 117, 7032-7041.	1.4	44
42	Killer Immunoglobulin-Like Receptor Transcriptional Regulation: A Fascinating Dance of Multiple Promoters. Journal of Innate Immunity, 2011, 3, 242-248.	3.8	30
43	Cutting Edge: <i>KIR</i> Antisense Transcripts Are Processed into a 28-Base PIWI-Like RNA in Human NK Cells. Journal of Immunology, 2010, 185, 2009-2012.	0.8	59
44	Identification and Analysis of Novel Transcripts and Promoters in the Human Killer Cell Immunoglobulin-like Receptor (KIR ) Genes. Methods in Molecular Biology, 2010, 612, 377-391.	0.9	1
45	Fine mapping and functional analysis of a common variant in <i>MSMB</i> on chromosome 10q11.2 associated with prostate cancer susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7933-7938.	7.1	96
46	The transcription factor c-Myc enhances KIR gene transcription through direct binding to an upstream distal promoter element. Blood, 2009, 113, 3245-3253.	1.4	46
47	Ly49 cluster sequence analysis in a mouse model of diabetes: an expanded repertoire of activating receptors in the NOD genome. Genes and Immunity, 2008, 9, 509-521.	4.1	38
48	Novel <i>KIR3DL1</i> Alleles and Their Expression Levels on NK Cells: Convergent Evolution of KIR3DL1 Phenotype Variation?. Journal of Immunology, 2008, 180, 6743-6750.	0.8	60
49	Genetic Control of Variegated KIR Gene Expression: Polymorphisms of the Bi-Directional KIR3DL1 Promoter Are Associated with Distinct Frequencies of Gene Expression. PLoS Genetics, 2008, 4, e1000254.	3.5	94
50	Antisense Transcripts Negatively Regulate Transcription of Multiple Variegated Killer Immunoglobulin-Like Receptor (KIR) Genes. Blood, 2008, 112, 105-105.	1.4	2
51	NF-κB p50/p65 Affects the Frequency of Ly49 Gene Expression by NK Cells. Journal of Immunology, 2007, 179, 1751-1759.	0.8	8
52	Detection of KIR3DS1 on the Cell Surface of Peripheral Blood NK Cells Facilitates Identification of a Novel Null Allele and Assessment of KIR3DS1 Expression during HIV-1 Infection. Journal of Immunology, 2007, 179, 1625-1633.	0.8	50
53	Autoimmunity, spontaneous tumourigenesis, and ILâ€15 insufficiency in mice with a targeted disruption of the tumour suppressor gene Fus1. Journal of Pathology, 2007, 211, 591-601.	4.5	35
54	Identification of distal KIR promoters and transcripts. Genes and Immunity, 2007, 8, 124-130.	4.1	29

#	Article	IF	CITATIONS
55	Identification of bidirectional promoters in the human KIR genes. Genes and Immunity, 2007, 8, 245-253.	4.1	59
56	A mutation in KIR3DS1 that results in truncation and lack of cell surface expression. Immunogenetics, 2007, 59, 823-829.	2.4	13
57	A mutation in KIR3DS1 that results in truncation and lack of cell surface expression. Immunogenetics, 2007, 59, 823.	2.4	2
58	STAT5A Overexpression Enhances Killer Immunoglobulin Receptor (KIR) Expression in Developing NK Cells and Is Associated with a Loss of Reverse Transcription from the Proximal KIR Promoter Blood, 2007, 110, 798-798.	1.4	1
59	Regulation of class I major histocompatibility complex receptor expression in natural killer cells: one promoter is not enough!. Immunological Reviews, 2006, 214, 9-21.	6.0	37
60	Transcriptional Regulation of NK Cell Receptors. Current Topics in Microbiology and Immunology, 2006, 298, 59-75.	1.1	31
61	Direct sequence comparison of two divergent class I MHC natural killer cell receptor haplotypes. Genes and Immunity, 2005, 6, 71-83.	4.1	46
62	Complete elucidation of a minimal class I MHC natural killer cell receptor haplotype. Genes and Immunity, 2005, 6, 481-492.	4.1	44
63	Biology of Natural Killer Cells: What Is the Relationship between Natural Killer Cells and Cancer? Will an Increased Number and/or Function of Natural Killer Cells Result in Lower Cancer Incidence?. Journal of Nutrition, 2005, 135, 2910S.	2.9	3
64	Independent Control of <i>Ly49g</i> Alleles: Implications for NK Cell Repertoire Selection and Tumor Cell Killing. Journal of Immunology, 2004, 172, 1414-1425.	0.8	20
65	Identification of Probabilistic Transcriptional Switches in the Ly49 Gene Cluster. Immunity, 2004, 21, 55-66.	14.3	94
66	Receptor Glycosylation Regulates Ly-49 Binding to MHC Class I. Journal of Immunology, 2003, 171, 4235-4242.	0.8	15
67	Regulation of Natural Killer Cell Function. Cancer Biology and Therapy, 2003, 2, 608-614.	3.4	24
68	Regulation of natural killer cell function. Cancer Biology and Therapy, 2003, 2, 610-6.	3.4	11
69	Aberrant DAP12 Signaling in the 129 Strain of Mice: Implications for the Analysis of Gene-Targeted Mice. Journal of Immunology, 2002, 169, 1721-1728.	0.8	47
70	ldentification of a Novel <i>Ly49</i> Promoter That Is Active in Bone Marrow and Fetal Thymus. Journal of Immunology, 2002, 168, 5163-5169.	0.8	48
71	A BAC Contig Map of the Ly49 Gene Cluster in 129 Mice Reveals Extensive Differences in Gene Content Relative to C57BL/6 Mice. Genomics, 2002, 79, 437-444.	2.9	73
72	The ever-expanding Ly49 gene family: repertoire and signaling. Immunological Reviews, 2001, 181, 79-89.	6.0	118

#	Article	IF	CITATIONS
73	Class I MHC-Binding Characteristics of the 129/J Ly49 Repertoire. Journal of Immunology, 2001, 166, 5034-5043.	0.8	77
74	Ly49 Gene Expression in Different Inbred Mouse Strains. Immunologic Research, 2000, 21, 39-48.	2.9	26
75	Characterization of the Ly49I promoter. Immunogenetics, 2000, 51, 326-331.	2.4	17
76	Induction of DAP12 phosphorylation, calcium mobilization, and cytokine secretion by Ly49H. Journal of Leukocyte Biology, 1999, 66, 165-171.	3.3	60
77	DAP12-mediated Signal Transduction in Natural Killer Cells. Journal of Biological Chemistry, 1998, 273, 32934-32942.	3.4	188
78	v-Ras and v-Raf Block Differentiation of Transformable C3H10T1/2-Derived Preadipocytes at Lower Levels Than Required for Neoplastic Transformation. Experimental Cell Research, 1997, 235, 188-197.	2.6	15
79	Characterization of the MouseNktrGene and Promoter. Genomics, 1997, 40, 94-100.	2.9	5
80	RS cyclophilins: Identification of an NK-TR1-related cyclophilin. Gene, 1996, 180, 151-155.	2.2	42
81	Molecular Cloning and Characterization of a Novel Mouse Macrophage Gene That Encodes a Nuclear Protein Comprising Polyglutamine Repeats and Interspersing Histidines. Journal of Biological Chemistry, 1996, 271, 25515-25523.	3.4	10
82	The Ly-49D Receptor Activates Murine Natural Killer Cells. Journal of Experimental Medicine, 1996, 184, 2119-2128.	8.5	198
83	Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2). Journal of Experimental Medicine, 1995, 182, 293-303.	8.5	199
84	The N-Terminal Cyclophilin-Homologous Domain of a 150-Kilodalton Tumor Recognition Molecule Exhibits Both Peptidylprolyl cis-trans-Isomerase and Chaperone Activities. Biochemistry, 1994, 33, 1668-1673.	2.5	52
85	Localization of a Novel Natural Killer Triggering Receptor Locus to Human Chromosome 3p23-p21 and Mouse Chromosome 9. Genomics, 1993, 16, 548-549.	2.9	9
86	IL-2 regulates the expression of the NK-TR gene via an alternate RNA splicing mechanism. Molecular Immunology, 1993, 30, 1307-1313.	2.2	13
87	A cyclophilin-related protein involved in the function of natural killer cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 542-546.	7.1	109
88	A functional and phenotypic comparison of murine natural killer (NK) cells and lymphokine-activated killer (LAK) cells. International Journal of Cancer, 1989, 43, 940-948.	5.1	19
89	Amelioration of experimental lung metastasis in mice by therapy with anti-CD3 monoclonal antibodies. Cancer Immunology, Immunotherapy, 1989, 29, 226-30.	4.2	12
90	Decreased p21 levels in anti-sense ras transfectants augments NK sensitivity. Molecular Immunology, 1989, 26, 985-991.	2.2	14

#	Article	IF	CITATIONS
91	The nucleotide sequence of theBgene of bacteriophage Mu. Nucleic Acids Research, 1984, 12, 8627-8638.	14.5	37
92	Dap12. The AFCS-nature Molecule Pages, 0, , .	0.2	1
93	Ly49O. The AFCS-nature Molecule Pages, 0, , .	0.2	Ο
94	Ly49L. The AFCS-nature Molecule Pages, 0, , .	0.2	0
95	Ly49P. The AFCS-nature Molecule Pages, 0, , .	0.2	0
96	Ly49V. The AFCS-nature Molecule Pages, 0, , .	0.2	0
97	Ly49I. The AFCS-nature Molecule Pages, 0, , .	0.2	0