Franck Ruffier

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/6153978/publications.pdf
Version: 2024-02-01

1 Floor and ceiling mirror configurations to study altitude control in honeybees. Biology Letters, 2022, 18, 20210534.

Helicopter Pilots Synchronize Their Altitude with Ship Heave to Minimize Energy When Landing on a Shipâ $€^{T M}$ s Deck. International Journal of Aerospace Psychology, 2021, 31, 135-148.

Signal-Based Self-Organization of a Chain of UAVs for Subterranean Exploration. Frontiers in Robotics and Al, 2021, 8, 614206.

4 Estimation of the distance from a surface based on local optic flow divergence. , 2021, , .
4

5 Ecological design of augmentation improves helicopter ship landing maneuvers: An approach in augmented virtuality. PLoS ONE, 2021, 16, e0255779.

6 Oscillations make a self-scaled model for honeybeesâ $€^{T M}$ visual odometer reliable regardless of flight
trajectory. Journal of the Royal Society Interface, 2021, 18, 20210567.
$7 \quad$ Sparse deep predictive coding captures contour integration capabilities of the early visual system.
$7 \quad$ PLoS Computational Biology, 2021, 17, e1008629.
$8 \quad$ A biphasic navigational strategy in loggerhead sea turtles. Scientific Reports, 2020, 10, 18130.

Effect of Top-Down Connections in Hierarchical Sparse Coding. Neural Computation, 2020, 32,
2279-2309.

Optic flow cues help explain altitude control over sea in freely flying gulls. Journal of the Royal
Society Interface, 2019, 16, 20190486.

11 A bio-inspired sighted robot chases like a hoverfly. Bioinspiration and Biomimetics, 2019, 14, 036002.
2.9

10

12 Informational Framework for Minimalistic Visual Odometry on Outdoor Robot. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2988-2995.

13 Robotic-flapper maneuvers and fruitfly turns. Science, 2018, 361, 1073-1074.

Altitude control in honeybees: joint vision-based learning and guidance. Scientific Reports, 2017, 7, 9231.

Optic flow-based collision-free strategies: From insects to robots. Arthropod Structure and Development, 2017, 46, 703-717.

A quasi-panoramic bio-inspired eye for flying parallel to walls. , 2017, , .
3

Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot. Sensors, 2017, 17,
571.

A Shape-Adjusted Tridimensional Reconstruction of Cultural Heritage Artifacts Using a Miniature
Quadrotor. Remote Sensing, 2016, 8, 858.

Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers. Bioinspiration and Biomimetics, 2015, 10, 026003.

A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light. Optics Express, 2015, 23, 5614.

Optic Flow Regulation in Unsteady Environments: A Tethered MAV Achieves Terrain Following and
27 Targeted Landing Over a Moving Platform. Journal of Intelligent and Robotic Systems: Theory and
3.4

Applications, 2015, 79, 275-293.

A biomimetic vision-based hovercraft accounts for beesâ€ $€^{\text {TM }}$ complex behaviour in various corridors.
28 Bioinspiration and Biomimetics, 2014, 9, 036003.
2.9

28

INSECT INSPIRED VISUAL MOTION SENSING AND FLYING ROBOTS. World Scientific Series in Nanoscience
and Nanotechnology, 2014, , 565-611.
$0.1 \quad 1$

Hardware Architecture and Cutting-Edge Assembly Process of a Tiny Curved Compound Eye. Sensors,
$30 \quad 2014,14,21702-21721$.
3.8

24
.

31 Optic flow-based nonlinear control and sub-optimal guidance for lunar landing. , 2014, , .

32 Event-based speed control on a sensor-less miniature thruster. , 2014, , .
0

33 Backup state observer based on Optic Flow applied to lunar landing. , 2014, , . 2

Two-Directional 1-g Visual Motion Sensor Inspired by the Fly's Eye. IEEE Sensors Journal, 2013, 13, 1025-1035.

35 Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields. , 2013, , .
A fully-autonomous hovercraft inspired by bees: Wall following and speed control in straight and
tapered corridors. , 2012,. .

Visual motion sensing onboard a 50-g helicopter flying freely under complex VICON-lighting conditions., 2012, , .

Special issue featuring selected papers from the International Workshop on Bio-Inspired Robots
(Nantes, France, 6â€ "8 April 2011). Bioinspiration and Biomimetics, 2012, 7, 020201.
2.9

1

44 A novel l-gram insect based device measuring visual motion along 5 optical directions. , 2011, , .

45 A mouse sensor and a 2-pixel motion sensor exposed to continuous illuminance changes. , 2011, , .
47 Honeybees' Speed Depends on Dorsal as Well as Lateral, Ventral and Frontal Optic Flows. PLoS ONE,
2011, 6, e19486.
2.5 62
48 CURVACE â€" CURVed Artificial Compound Eyes. Procedia Computer Science, 2011, 7, 308-309. 2.0 2
49 Outdoor field performances of insectâ€based visual motion sensors. Journal of Field Robotics, 2011, 28,
529-541. 6.0 34Honeybees change their height to restore their optic flow. Journal of Comparative Physiology A:1.648Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 307-313.Modelling honeybee visual guidance in a 3-D environment. Journal of Physiology (Paris), 2010, 104,2.134
27-39.Biomimetic optic flow sensing applied to a lunar landing scenario. , 2010, , .28
Characteristics of Three Miniature Bio-inspired Optic Flow Sensors in Natural Environments. , 2010, , .12

$$
\begin{align*}
& 55 \text { Field Programmable Gate Array (FPGA) for Bio-Inspired Visuo-Motor Control Systems Applied to } \tag{0}\\
& \text { Micro-Air Vehicles. , 2009, , . }
\end{align*}
$$

Guest editorial: Visual guidance systems forÂsmallÂUnmannedÂAerialÂVehicles. Autonomous Robots, 2009, 27, 145-146.

