
Frédéric Pecorari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6153950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of Affitins for Affinity Purification of Proteins. Methods in Molecular Biology, 2022, 2466, 37-48.	0.9	0
2	A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Scientific Reports, 2021, 11, 17234.	3.3	1
3	Characterization of Affitin proteolytic digestion in biorelevant media and improvement of their stabilities via protein engineering. Scientific Reports, 2020, 10, 19703.	3.3	4
4	Affitins: Ribosome Display for Selection of Aho7c-Based Affinity Proteins. Methods in Molecular Biology, 2020, 2070, 19-41.	0.9	6
5	Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements. RSC Advances, 2019, 9, 27264-27278.	3.6	11
6	Multivalent Affidendrons with High Affinity and Specificity toward <i>Staphylococcus aureus</i> as Versatile Tools for Modulating Multicellular Behaviors. ACS Applied Materials & Interfaces, 2019, 11, 21391-21398.	8.0	11
7	Wholeâ€bacterium ribosome display selection for isolation of highly specific anti―Staphyloccocus aureus Affitins for detection―and captureâ€based biomedical applications. Biotechnology and Bioengineering, 2019, 116, 1844-1855.	3.3	9
8	Prosthetic groups for radioiodination and astatination of peptides and proteins: A comparative study of five potential bioorthogonal labeling strategies. Bioorganic and Medicinal Chemistry, 2019, 27, 167-174.	3.0	25
9	Novel Tn916-like elements confer aminoglycoside/macrolide co-resistance in clinical isolates of Streptococcus gallolyticus ssp. gallolyticus. Journal of Antimicrobial Chemotherapy, 2018, 73, 1201-1205.	3.0	9
10	A novel, smaller scaffold for Affitins: Showcase with binders specific for EpCAM. Biotechnology and Bioengineering, 2018, 115, 290-299.	3.3	19
11	Draft Genome Sequence of Mycobacterium ulcerans S4018 Isolated from a Patient with an Active Buruli Ulcer in Benin, Africa. Genome Announcements, 2017, 5, .	0.8	4
12	InÂvitro emergence of fluoroquinolone resistance in Cutibacterium (formerly Propionibacterium) acnes and molecular characterization of mutations in the gyrA gene. Anaerobe, 2017, 47, 194-200.	2.1	13
13	Draft Genome Sequences of Two Highly Erythromycin-Resistant Streptococcus gallolyticus subsp. gallolyticus Isolates Containing a Novel Tn 916 -Like Element, Tn 6331. Genome Announcements, 2017, 5, .	0.8	7
14	The archaeal "7 kDa DNA-binding―proteins: extended characterization of an old gifted family. Scientific Reports, 2016, 6, 37274.	3.3	21
15	Affitins for protein purification by affinity magnetic fishing. Journal of Chromatography A, 2016, 1457, 50-58.	3.7	22
16	Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins. Journal of Chromatography A, 2016, 1441, 44-51.	3.7	29
17	Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express, 2015, 5, 73.	3.0	6
18	Biotechnological Uses of Archaeal Proteins. Archaea, 2015, 2015, 1-2.	2.3	1

2

#	Article	IF	CITATIONS
19	Draft Genome Sequence of Erythromycin-Resistant Streptococcus gallolyticus subsp. gallolyticus NTS 31106099 Isolated from a Patient with Infective Endocarditis and Colorectal Cancer. Genome Announcements, 2015, 3, .	0.8	5
20	Artificial Affinity Proteins as Ligands of Immunoglobulins. Biomolecules, 2015, 5, 60-75.	4.0	24
21	Affinity transfer to the archaeal extremophilic Sac7d protein by insertion of a CDR. Protein Engineering, Design and Selection, 2014, 27, 431-438.	2.1	16
22	Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability. Journal of Biotechnology, 2014, 192, 123-129.	3.8	18
23	Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins). PLoS ONE, 2014, 9, e97438.	2.5	42
24	Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins. Protein Engineering, Design and Selection, 2013, 26, 267-275.	2.1	38
25	Ribosome Display for the Selection of Sac7d Scaffolds. Methods in Molecular Biology, 2012, 805, 315-331.	0.9	25
26	Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays. Journal of Biological Inorganic Chemistry, 2012, 17, 399-407.	2.6	16
27	Reagentless fluorescent biosensors from artificial families of antigen binding proteins. Biosensors and Bioelectronics, 2011, 26, 4184-4190.	10.1	29
28	Type II Secretion System Secretin PulD Localizes in Clusters in the <i>Escherichia coli</i> Outer Membrane. Journal of Bacteriology, 2009, 191, 161-168.	2.2	47
29	Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies. Acta Neuropathologica, 2009, 118, 685-695.	7.7	49
30	Bisphosphonate Adaptors for Specific Protein Binding on Zirconium Phosphonate-based Microarrays. Bioconjugate Chemistry, 2009, 20, 2270-2277.	3.6	36
31	Artificial Binding Proteins (Affitins) as Probes for Conformational Changes in Secretin PulD. Journal of Molecular Biology, 2008, 383, 1058-1068.	4.2	45
32	Remodeling a DNA-binding protein as a specific <i>in vivo</i> inhibitor of bacterial secretin PulD. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17983-17988.	7.1	78
33	A Designed Ankyrin Repeat Protein Evolved to Picomolar Affinity to Her2. Journal of Molecular Biology, 2007, 369, 1015-1028.	4.2	211
34	Structures of in Vitro Evolved Binding Sites on Neocarzinostatin Scaffold Reveal Unanticipated Evolutionary Pathways. Journal of Molecular Biology, 2006, 358, 455-471.	4.2	24
35	Selection and Characterization of Her2 Binding-designed Ankyrin Repeat Proteins. Journal of Biological Chemistry, 2006, 281, 35167-35175.	3.4	91
36	Structural analysis of mycobacterial and murine hsp60 epitopes in complex with the class I MHC molecule H-2Db. FEBS Letters, 2003, 543, 11-15.	2.8	1

Frédéric Pecorari

#	Article	IF	CITATIONS
37	In Vitro Evolution of the Binding Specificity of Neocarzinostatin, an Enediyne-Binding Chromoproteinâ€. Biochemistry, 2003, 42, 5674-5683.	2.5	49
38	Zooming in on the hydrophobic ridge of H-2Db: implications for the conformational variability of bound peptides11Edited by I. A. Wilson. Journal of Molecular Biology, 2001, 312, 1059-1071.	4.2	16
39	Characterizing the functionality of recombinant T-cell receptors in vitro: a pMHC tetramer based approach. Journal of Immunological Methods, 2000, 236, 147-165.	1.4	11
40	Functionally Accepted Insertions of Proteins within Protein Domains. Journal of Biological Chemistry, 2000, 275, 17428-17433.	3.4	45
41	Folding, heterodimeric association and specific peptide recognition of a murine αβ T-cell receptor expressed in Escherichia coli 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 285, 1831-1843.	4.2	32
42	Folding and Functional Complementation of Engineered Fragments from Yeast Phosphoglycerate Kinaseâ€. Biochemistry, 1996, 35, 3465-3476.	2.5	24
43	Low frequency motions in phosphoglycerate kinase. A normal mode analysis. Chemical Physics, 1996, 204, 327-336.	1.9	27
44	Occurrence of Transient Multimeric Species during the Refolding of a Monomeric Protein. Journal of Biological Chemistry, 1996, 271, 5270-5276.	3.4	23
45	Structure and functional complementation of engineered fragments from yeast phosphoglycerate kinase. Protein Engineering, Design and Selection, 1993, 6, 313-324.	2.1	12