Joseph Moran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6152798/publications.pdf

Version: 2024-02-01

126858 123376 4,737 59 33 61 h-index citations g-index papers 95 95 95 4198 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tilting a ground-state reactivity landscape by vibrational strong coupling. Science, 2019, 363, 615-619.	6.0	495
2	Groundâ€State Chemical Reactivity under Vibrational Coupling to the Vacuum Electromagnetic Field. Angewandte Chemie - International Edition, 2016, 55, 11462-11466.	7.2	342
3	Iridium-catalysed direct C–C coupling of methanol and allenes. Nature Chemistry, 2011, 3, 287-290.	6.6	218
4	Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature, 2019, 569, 104-107.	13.7	207
5	Recent Advances in Nickel Catalysis Enabled by Stoichiometric Metallic Reducing Agents. Synthesis, 2018, 50, 499-513.	1.2	191
6	Metals promote sequences of the reverse Krebs cycle. Nature Ecology and Evolution, 2017, 1, 1716-1721.	3.4	166
7	Exploiting hexafluoroisopropanol (HFIP) in Lewis and Br $ ilde{A}_{_{\! 4}}$ nsted acid-catalyzed reactions. Chemical Communications, 2020, 56, 11548-11564.	2.2	166
8	Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nature Ecology and Evolution, 2018, 2, 1019-1024.	3.4	154
9	Nonenzymatic Metabolic Reactions and Life's Origins. Chemical Reviews, 2020, 120, 7708-7744.	23.0	154
10	Catalytic Friedel–Crafts Reactions of Highly Electronically Deactivated Benzylic Alcohols. Angewandte Chemie - International Edition, 2017, 56, 3085-3089.	7.2	152
11	A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nature Ecology and Evolution, 2020, 4, 534-542.	3.4	140
12	Recent Advances in Direct Catalytic Dehydrative Substitution of Alcohols. Synthesis, 2016, 48, 935-959.	1.2	137
13	Diastereo- and Enantioselective Ruthenium-Catalyzed Hydrohydroxyalkylation of 2-Silyl-butadienes: Carbonyl <i>syn</i> -Crotylation from the Alcohol Oxidation Level. Journal of the American Chemical Society, 2011, 133, 10582-10586.	6.6	132
14	Nucleophilic Ring Opening of Donor–Acceptor Cyclopropanes Catalyzed by a Brønsted Acid in Hexafluoroisopropanol. Organic Letters, 2018, 20, 574-577.	2.4	129
15	A Catalytic Tethering Strategy: Simple Aldehydes Catalyze Intermolecular Alkene Hydroaminations. Journal of the American Chemical Society, 2011, 133, 20100-20103.	6.6	113
16	Ligand Control of <i>E</i> /i>/ci>Z Selectivity in Nickel-Catalyzed Transfer Hydrogenative Alkyne Semireduction. Journal of Organic Chemistry, 2015, 80, 6922-6929.	1.7	113
17	Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation. Pure and Applied Chemistry, 2012, 84, 1729-1739.	0.9	112
18	Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. Chemical Communications, 2010, 46, 931-933.	2.2	107

#	Article	IF	CITATIONS
19	Groundâ€ 5 tate Chemical Reactivity under Vibrational Coupling to the Vacuum Electromagnetic Field. Angewandte Chemie, 2016, 128, 11634-11638.	1.6	94
20	Polarity Inversion of Donor–Acceptor Cyclopropanes: Disubstituted δ-Lactones via Enantioselective Iridium Catalysis. Journal of the American Chemical Society, 2011, 133, 18618-18621.	6.6	90
21	Intermolecular Copeâ€Type Hydroamination of Alkenes and Alkynes. Angewandte Chemie - International Edition, 2008, 47, 1410-1413.	7.2	87
22	Intermolecular Cope-Type Hydroamination of Alkenes and Alkynes using Hydroxylamines. Journal of the American Chemical Society, 2008, 130, 17893-17906.	6.6	84
23	Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes. Journal of Physical Chemistry Letters, 2016, 7, 2714-2721.	2.1	73
24	Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics, 2020, 9, 249-255.	2.9	71
25	Autocatalytic Friedel–Crafts Reactions of Tertiary Aliphatic Fluorides Initiated by B(C ₆ F ₅) ₃ ·H ₂ O. ACS Catalysis, 2016, 6, 3670-3673.	5.5	70
26	Nitro-Assisted BrÃ,nsted Acid Catalysis: Application to a Challenging Catalytic Azidation. Journal of the American Chemical Society, 2015, 137, 9555-9558.	6.6	69
27	Suzuki–Miyaura Coupling of (Hetero)Aryl Sulfones: Complementary Reactivity Enables Iterative Polyaryl Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14959-14963.	7.2	67
28	Ring-opening hydroarylation of monosubstituted cyclopropanes enabled by hexafluoroisopropanol. Chemical Science, 2018, 9, 6411-6416.	3.7	62
29	Modifying Woodward–Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angewandte Chemie - International Edition, 2021, 60, 5712-5717.	7.2	48
30	Ketonitrones via Cope-Type Hydroamination of Allenes. Organic Letters, 2009, 11, 1895-1898.	2.4	44
31	Unlocking the Friedel-Crafts arylation of primary aliphatic alcohols and epoxides driven by hexafluoroisopropanol. CheM, 2021, 7, 3425-3441.	5.8	44
32	Catalytic Friedel–Crafts Reactions of Highly Electronically Deactivated Benzylic Alcohols. Angewandte Chemie, 2017, 129, 3131-3135.	1.6	41
33	Identifying lead hits in catalyst discovery by screening and deconvoluting complex mixtures of catalyst components. Chemical Science, 2015, 6, 2501-2505.	3.7	38
34	Mechanistic Insight into Metal Ion-Catalyzed Transamination. Journal of the American Chemical Society, 2021, 143, 19099-19111.	6.6	34
35	Breaking the dichotomy of reactivity vs. chemoselectivity in catalytic S _N 1 reactions of alcohols. Organic and Biomolecular Chemistry, 2014, 12, 5990-5994.	1.5	33
36	Catalytic B(C6F5)3H2O-promoted defluorinative functionalization of tertiary aliphatic fluorides. Journal of Fluorine Chemistry, 2017, 193, 45-51.	0.9	32

#	Article	IF	CITATIONS
37	Intermolecular Hydroaminations via Strained (E)-Cycloalkenes. Journal of Organic Chemistry, 2008, 73, 1004-1007.	1.7	30
38	An investigation of catalyst/cocatalyst/support interactions in silica-supported olefin polymerization catalysts based on Cp*TiMe3*. Topics in Catalysis, 2005, 34, 109-120.	1.3	28
39	Intermolecular Cope-type hydroamination of alkynes using hydrazines. Chemical Communications, 2008, , 492-493.	2.2	28
40	Strain-promoted 1,3-dipolar cycloadditions of diazo compounds with cyclooctynes. Canadian Journal of Chemistry, 2011, 89, 148-151.	0.6	25
41	Enantioselective and Regiodivergent Functionalization of <i>Nâ€</i> Allylcarbamates by Mechanistically Divergent Multicatalysis. Chemistry - A European Journal, 2016, 22, 12274-12277.	1.7	25
42	Recreating ancient metabolic pathways before enzymes. Bioorganic and Medicinal Chemistry, 2019, 27, 2292-2297.	1.4	24
43	A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
44	Rapid and Mild Metal-Free Reduction of Epoxides to Primary Alcohols Mediated by HFIP. ACS Catalysis, 2022, 12, 3309-3316.	5.5	23
45	Catalytic Synthesis of Trifluoromethylated Allenes, Indenes, Chromenes, and Olefins from Propargylic Alcohols in HFIP. Journal of Organic Chemistry, 2019, 84, 15926-15947.	1.7	20
46	Strain-Release Electrophilic Activation via E-Cycloalkenones. Organic Letters, 2007, 9, 3893-3896.	2.4	19
47	Brønsted Acid and Hâ€Bond Activation in Boronic Acid Catalysis. Chemistry - A European Journal, 2020, 26, 9883-9888.	1.7	19
48	Photoinduced 1,4-Additions of Indoles to Enones. Journal of Organic Chemistry, 2006, 71, 676-679.	1.7	18
49	Hydroarylation of enamides enabled by HFIP <i>via</i> a hexafluoroisopropyl ether as iminium reservoir. Chemical Science, 2022, 13, 8436-8443.	3.7	16
50	Suzuki–Miyaura Coupling of (Hetero)Aryl Sulfones: Complementary Reactivity Enables Iterative Polyaryl Synthesis. Angewandte Chemie, 2019, 131, 15101-15105.	1.6	14
51	Peptide synthesis at the origin of life. Science, 2020, 370, 767-768.	6.0	14
52	Modifying Woodward–Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angewandte Chemie, 2021, 133, 5776-5781.	1.6	13
53	Desulfonative Suzuki–Miyaura Coupling of Sulfonyl Fluorides. Angewandte Chemie - International Edition, 2021, 60, 25307-25312.	7.2	13
54	Harnessing Complex Mixtures for Catalyst Discovery. Synlett, 2016, 27, 2637-2643.	1.0	8

#	Article	IF	CITATIONS
55	Synthesis of new Mn ₁₉ analogues and their structural, electrochemical and catalytic properties. Dalton Transactions, 2019, 48, 4830-4836.	1.6	4
56	Desulfonative Suzuki–Miyaura Coupling of Sulfonyl Fluorides. Angewandte Chemie, 2021, 133, 25511-25516.	1.6	4
57	A Supramolecular Model for the Coâ€Catalytic Role of Nitro Compounds in Brønsted Acid Catalyzed Reactions. Chemistry - A European Journal, 2020, 26, 10976-10980.	1.7	3
58	Intramolecular cyclization and subsequent rearrangements of alkyne-tethered N-heterocyclic carbenes. Tetrahedron Letters, 2012, 53, 5663-5666.	0.7	2
59	A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angewandte Chemie, 0, , .	1.6	2