
John C Mackie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6152659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science, 2009, 35, 245-274.	31.2	401
2	Shock tube pyrolysis of pyridine. The Journal of Physical Chemistry, 1990, 94, 4099-4106.	2.9	151
3	Shock tube pyrolysis of pyrrole and kinetic modeling. International Journal of Chemical Kinetics, 1991, 23, 733-760.	1.6	115
4	Partial Oxidation of Methane: The Role of the Gas Phase Reactions. Catalysis Reviews - Science and Engineering, 1991, 33, 169-240.	12.9	108
5	Pyrolysis of Furan:Â Ab Initio Quantum Chemical and Kinetic Modeling Studies. Journal of Physical Chemistry A, 2000, 104, 1861-1875.	2.5	102
6	Release of HCN, NH3, and HNCO from the Thermal Gas-Phase Cracking of Coal Pyrolysis Tars. Energy & Fuels, 1998, 12, 536-541.	5.1	86
7	Low temperature oxidation of linseed oil: a review. Fire Science Reviews, 2012, 1, .	0.9	80
8	Quantum Chemical Investigation of Formation of Polychlorodibenzo-p-Dioxins and Dibenzofurans from Oxidation and Pyrolysis of 2-Chlorophenol. Journal of Physical Chemistry A, 2007, 111, 2563-2573.	2.5	73
9	Ab Initio Quantum Chemical and Kinetic Modeling Study of the Pyrolysis Kinetics of Pyrrole. Journal of Physical Chemistry A, 1999, 103, 3923-3934.	2.5	69
10	Kinetics of pyrolysis of furan. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 815.	1.7	63
11	Search for a Chargeâ€Transfer State in Crystalline Anthracene. Journal of Chemical Physics, 1965, 42, 1535-1540.	3.0	61
12	Heats of Formation of Hydrofluorocarbons Obtained by Gaussian-3 and Related Quantum Chemical Computations. Journal of Physical Chemistry A, 2000, 104, 7600-7611.	2.5	60
13	Decomposition of the Benzyl Radical:  Quantum Chemical and Experimental (Shock Tube) Investigations of Reaction Pathways. Journal of Physical Chemistry A, 1997, 101, 7105-7113.	2.5	59
14	Pyrolysis of coal at high temperatures. Energy & Fuels, 1988, 2, 391-400.	5.1	56
15	Shock-Tube Study of the Pyrolysis of the Halon Replacement Molecule CF3CHFCF3. Journal of Physical Chemistry A, 1999, 103, 54-61.	2.5	52
16	Products from rapid heating of a brown coal in the temperature range 400–2300 °C. Fuel, 1984, 63, 394-400.	6.4	51
17	The thermal decomposition of pyrrole: an ab initio quantum chemical study of the potential energy surface associated with the hydrogen cyanide plus propyne channel. Chemical Physics Letters, 1999, 300, 321-330.	2.6	46
18	Thermal decomposition of two coal model compounds — pyridine and 2-picoline. Kinetics and product distributions. Journal of Analytical and Applied Pyrolysis, 1995, 34, 47-63.	5.5	45

#	Article	IF	CITATIONS
19	Theoretical Study of Unimolecular Decomposition of Catechol. Journal of Physical Chemistry A, 2010, 114, 1060-1067.	2.5	44
20	Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol. Journal of Computational Chemistry, 2011, 32, 1725-1733.	3.3	43
21	An ab initio quantum chemical study of the electronic structure and stability of the pyrrolyl radical: Comparison with the isoelectronic cyclopentadienyl radical. Chemical Physics Letters, 1998, 290, 391-398.	2.6	42
22	An Ab Initio Quantum Chemical and Kinetic Study of the NNH + O Reaction Potential Energy Surface: How Important Is This Route to NO in Combustion?. Journal of Physical Chemistry A, 2003, 107, 6792-6803.	2.5	40
23	Accurate Rate Constants for Decomposition of Aqueous Nitrous Acid. Inorganic Chemistry, 2012, 51, 2178-2185.	4.0	40
24	Kinetics of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic analog of toluene. 1. Product distributions. The Journal of Physical Chemistry, 1992, 96, 10334-10339.	2.9	39
25	The pyrolysis of cyclopentadiene: quantum chemical and kinetic modelling studies of the acetylene plus propyne/allene decomposition channels. Physical Chemistry Chemical Physics, 2001, 3, 2467-2473.	2.8	39
26	Theoretical Study of the Ammoniaâ^'Hypochlorous Acid Reaction Mechanism. Journal of Physical Chemistry A, 2010, 114, 2597-2606.	2.5	39
27	Experimental and chemical kinetic study of the pyrolysis of trifluoroethane and the reaction of trifluoromethane with methane. Journal of Fluorine Chemistry, 2010, 131, 751-760.	1.7	38
28	Observation of Cyclopenta-Fused and Ethynyl-Substituted PAH during the Fuel-Rich Combustion of Primary Tar from a Bituminous Coal. Energy & Fuels, 1999, 13, 1167-1172.	5.1	37
29	A kinetic study of the oxidation of pyridine. Proceedings of the Combustion Institute, 2000, 28, 1709-1716.	3.9	36
30	Catalytic Effect of CuO and Other Transition Metal Oxides in Formation of Dioxins:Â Theoretical Investigation of Reaction Between 2,4,5-Trichlorophenol and CuO. Environmental Science & Technology, 2007, 41, 5708-5715.	10.0	36
31	Thermochemical Properties and Decomposition Pathways of Three Isomeric Semiquinone Radicals. Journal of Physical Chemistry A, 2010, 114, 1098-1108.	2.5	36
32	Quantum Chemical Study of the Mechanism of Reaction between NH (X 3Σ-) and H2, H2O, and CO2 under Combustion Conditions. Journal of Physical Chemistry A, 2005, 109, 11967-11974.	2.5	35
33	Quantum Chemical and Kinetic Study of Formation of 2-Chlorophenoxy Radical from 2-Chlorophenol: Unimolecular Decomposition and Bimolecular Reactions with H, OH, Cl, and O ₂ . Journal of Physical Chemistry A, 2008, 112, 3680-3692.	2.5	34
34	Experimental and ab Initio Theoretical Study of the Kinetics of Rearrangement of Ketene Imine to Acetonitrile. The Journal of Physical Chemistry, 1994, 98, 13546-13555.	2.9	33
35	Pyrolysis of permethrin and formation of precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) under non-oxidative conditions. Chemosphere, 2009, 74, 1435-1443.	8.2	32
36	Identification and Quantitation of Volatile Organic Compounds from Oxidation of Linseed Oil. Industrial & Engineering Chemistry Research, 2012, 51, 5645-5652.	3.7	32

#	Article	IF	CITATIONS
37	Ab Initio Quantum Chemical and Experimental (Shock Tube) Studies of the Pyrolysis Kinetics of Acetonitrile. Journal of Physical Chemistry A, 1999, 103, 1054-1072.	2.5	31
38	Theoretical Study of Reaction Pathways of Dibenzofuran and Dibenzo- <i>p</i> -Dioxin under Reducing Conditions. Journal of Physical Chemistry A, 2007, 111, 7133-7140.	2.5	30
39	Computational Study of the Oxidation and Decomposition of Dibenzofuran under Atmospheric Conditions. Journal of Physical Chemistry A, 2008, 112, 6960-6967.	2.5	30
40	A first-principles density functional study of chlorophenol adsorption on Cu2O(110):CuO. Journal of Chemical Physics, 2009, 130, 184505.	3.0	30
41	Rate constants for reactions of ethylbenzene with hydroperoxyl radical. Combustion and Flame, 2013, 160, 9-16.	5.2	30
42	Quantum Chemical Study of Low Temperature Oxidation Mechanism of Dibenzofuran. Journal of Physical Chemistry A, 2006, 110, 13560-13567.	2.5	29
43	An Experimental and Kinetic Modeling Study of the Reaction of CHF3 with Methane. Environmental Science & Technology, 2006, 40, 5778-5785.	10.0	27
44	Adsorption of chlorophenol on the Cu(111) surface: A first-principles density functional theory study. Applied Surface Science, 2008, 254, 4218-4224.	6.1	27
45	Kinetics of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic analogue of toluene. 2. The 2-picolyl radical and kinetic modeling. The Journal of Physical Chemistry, 1992, 96, 10339-10348.	2.9	25
46	Kinetics of thermal decomposition of the diazines: shock-tube pyrolysis of pyrimidine. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 541.	1.7	25
47	An equilibrium ab initio atomistic thermodynamics study of chlorine adsorption on the Cu(001) surface. Physical Chemistry Chemical Physics, 2011, 13, 10306.	2.8	25
48	Chlorination of the Cu(110) Surface and Copper Nanoparticles: A Density Functional Theory Study. Journal of Physical Chemistry C, 2011, 115, 13412-13419.	3.1	25
49	Inhibition of C2 oxidation by methane under oxidative coupling conditions. Energy & Fuels, 1990, 4, 277-285.	5.1	24
50	Kinetics of pyrolysis of the isomeric butenenitriles and kinetic modeling. The Journal of Physical Chemistry, 1992, 96, 272-281.	2.9	24
51	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in oxidation of captan pesticide. Proceedings of the Combustion Institute, 2011, 33, 701-708.	3.9	24
52	Determination of toxic products released in combustion of pesticides. Progress in Energy and Combustion Science, 2012, 38, 400-418.	31.2	24
53	Conversion of CHF3to CH2î—»CF2via Reaction with CH4and CaBr2. Environmental Science & Technology, 2008, 42, 5795-5799.	10.0	23
54	Ab initio studies of the thermal decomposition of azaaromatics: free radical versus intramolecular mechanism. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1587.	1.7	22

#	Article	IF	CITATIONS
55	Mechanism of Formation of Volatile Organic Compounds from Oxidation of Linseed Oil. Industrial & Engineering Chemistry Research, 2012, 51, 5653-5661.	3.7	22
56	The Role of Phosphorus Dioxide in the H + OH Recombination Reaction:  Ab Initio Quantum Chemical Computation of Thermochemical and Rate Parameters. Journal of Physical Chemistry A, 2002, 106, 1533-1541.	2.5	21
57	Conversion of Fluorine-Containing Ozone-Depleting and Greenhouse Gases to Valuable Polymers in a Nonthermal Plasma. Industrial & Engineering Chemistry Research, 2012, 51, 11279-11283.	3.7	20
58	Oxidation of CO by SO2:  A Theoretical Study. Journal of Physical Chemistry A, 2005, 109, 2019-2025.	2.5	19
59	Conversion of CHF3 to CH2CF2 via reaction with CH4 in the presence of CBrF3: An experimental and kinetic modelling study. Journal of Hazardous Materials, 2010, 180, 181-187.	12.4	19
60	Interaction of Chlorine and Oxygen with the Cu(100) Surface. Journal of Physical Chemistry C, 2010, 114, 19048-19054.	3.1	19
61	Oxidation reactions and spontaneous ignition of linseed oil. Proceedings of the Combustion Institute, 2011, 33, 2625-2632.	3.9	18
62	Mechanistic study of the reaction of CHF3 with CH4. Chemical Engineering Journal, 2011, 166, 822-831.	12.7	18
63	A Melamineâ€Modified βâ€Zeolite with Enhanced CO ₂ Capture Properties. Energy Technology, 2013, 1, 345-349.	3.8	18
64	Theoretical study of reactions of HO2 in low-temperature oxidation of benzene. Combustion and Flame, 2010, 157, 1325-1330.	5.2	17
65	Thermal Decomposition of Captan and Formation Pathways of Toxic Air Pollutants. Environmental Science & Technology, 2010, 44, 4149-4154.	10.0	17
66	Mechanism of the Thermal Decomposition of Chlorpyrifos and Formation of the Dioxin Analog, 2,3,7,8-Tetrachloro-1,4-dioxino-dipyridine (TCDDpy). Environmental Science & Technology, 2018, 52, 7327-7333.	10.0	17
67	Reactions of Phosphorus-Containing Species of Importance in the Catalytic Recombination of H + OH:Â Quantum Chemical and Kinetic Studiesâ€. Journal of Physical Chemistry A, 2002, 106, 10825-10830.	2.5	16
68	Experimental and Kinetic Studies of Gas-phase Pyrolysis of <i>n</i> -C ₄ F ₁₀ . Industrial & Engineering Chemistry Research, 2008, 47, 2579-2584.	3.7	16
69	Catalytic pyrolysis of CHF3 over activated carbon and activated carbon supported potassium catalyst. Journal of Fluorine Chemistry, 2010, 131, 698-703.	1.7	16
70	Study on Catalyst Deactivation During the Hydrodeoxygenation of Model Compounds. Topics in Catalysis, 2020, 63, 778-792.	2.8	16
71	The isomerization of cycloheptatriene at high temperatures. International Journal of Chemical Kinetics, 1976, 8, 695-707.	1.6	15
72	Products from the rapid pyrolysis of a brown coal in inert and reducing atmospheres. Fuel, 1985, 64, 400-405.	6.4	15

#	Article	IF	CITATIONS
73	Experimental and Quantum Chemical Study of the Reaction CF2+ CH3↔ CF2CH3→ CH2CF2+ H: A Key Mechanism in the Reaction between Methane and Fluorocarbons. Industrial & Engineering Chemistry Research, 2006, 45, 3758-3762.	3.7	15
74	2-Chlorophenol adsorption on Cu(100): First-principles density functional study. Surface Science, 2008, 602, 1554-1562.	1.9	14
75	Shock Tube Study of the Oxidation of C3F6by N2O. Journal of Physical Chemistry A, 1999, 103, 5967-5977.	2.5	13
76	Pyrolysis of Glyphosate and Its Toxic Products. Environmental Science & Technology, 2019, 53, 13742-13747.	10.0	13
77	The Catalyzed Conversion of Methane to Valueâ€Added Products. Energy Technology, 2020, 8, 1900665.	3.8	13
78	Quantum chemical study of copper (II) chloride and the Deacon reaction. Chemical Physics Letters, 2011, 501, 215-220.	2.6	12
79	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) from oxidation of 4,4′-dichlorobiphenyl (4,4′-DCB). Proceedings of the Combustion Institute, 2019, 37, 1075-1082.	3.9	12
80	Effect of Methanol on the Gas-Phase Reaction of Trifluoromethane with Methane. Industrial & Engineering Chemistry Research, 2010, 49, 8406-8414.	3.7	11
81	Air Pollutants Formed in Thermal Decomposition of Folpet Fungicide under Oxidative Conditions. Environmental Science & Technology, 2011, 45, 554-560.	10.0	11
82	Kinetics of Decomposition of PFOS Relevant to Thermal Desorption Remediation of Soils. Industrial & Engineering Chemistry Research, 2021, 60, 9080-9087.	3.7	11
83	Simultaneous conversion of CHClF2 and CH3Br to CH2CF2. Chemosphere, 2007, 68, 2003-2006.	8.2	10
84	Experimental Study of Decomposition of Aqueous Nitrosyl Thiocyanate. Inorganic Chemistry, 2011, 50, 7440-7452.	4.0	10
85	Experimental and theoretical study of the isomerisation of N-methylpyrrole. Chemical Physics Letters, 1994, 221, 267-273.	2.6	9
86	A Study of Furan as a Model Oxygenated Reburn Fuel for Nitric Oxide Reduction. Energy & Fuels, 2001, 15, 743-750.	5.1	9
87	A DFT study on the self-coupling reactions of the three isomeric semiquinone radicals. Computational and Theoretical Chemistry, 2010, 958, 106-115.	1.5	9
88	Formation of toxic species and precursors of PCDD/F in thermal decomposition of alpha-cypermethrin. Chemosphere, 2011, 85, 143-150.	8.2	9
89	Roles of peroxides and unsaturation in spontaneous heating of linseed oil. Fire Safety Journal, 2013, 61, 108-115.	3.1	9
90	The formation of nitrogen species and oxygenated PAH during the combustion of coal volatiles. Proceedings of the Combustion Institute, 1998, 27, 1687-1693.	0.3	8

#	Article	IF	CITATIONS
91	Adsorption of 2-chlorophenol on Cu2O(111)–CuCUS: A first-principles density functional study. Applied Surface Science, 2010, 256, 4764-4770.	6.1	8
92	Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation. Physical Chemistry Chemical Physics, 2015, 17, 7038-7045.	2.8	8
93	Effect of methane on the conversion of HFC-134a in a dielectric barrier discharge non-equilibrium plasma reactor. Chemical Engineering Journal, 2016, 284, 412-421.	12.7	8
94	Mechanism and Rate of Thermal Decomposition of Hexachlorocyclopentadiene and Its Importance in PCDD/F Formation from the Combustion of Cyclodiene Pesticides. Journal of Physical Chemistry A, 2017, 121, 5871-5883.	2.5	8
95	Products and mechanism of thermal decomposition of chlorpyrifos under inert and oxidative conditions. Environmental Sciences: Processes and Impacts, 2020, 22, 2084-2094.	3.5	8
96	A kinetic study of the oxidation of acetonitrile: A model for NO formation from fuel-bound nitrogen. Proceedings of the Combustion Institute, 1996, 26, 597-604.	0.3	7
97	An experimental and kinetic modeling study of the reduction of no by coal volatiles in a flow reactor. Proceedings of the Combustion Institute, 2000, 28, 2345-2351.	3.9	7
98	Conversion of a CFCs, HFCs and HCFCs waste mixture via reaction with methane. Journal of Hazardous Materials, 2010, 184, 696-703.	12.4	7
99	Toxic pollutants emitted from thermal decomposition of phthalimide compounds. Journal of Hazardous Materials, 2011, 187, 407-412.	12.4	7
100	Oxidation of dibenzo-p-dioxin: Formation of initial products, 2-methylbenzofuran and 3-hydro-2-methylenebenzofuran. Combustion and Flame, 2012, 159, 3056-3065.	5.2	7
101	Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) by precursor pathways in oxidation of pesticide alpha-cypermethrin. Proceedings of the Combustion Institute, 2013, 34, 3499-3507.	3.9	7
102	Nonâ€Oxidative Conversion of 1,2â€Dichloroethane in a Nonâ€Thermal Plasma and Characterisation of the Polymer Formed. Plasma Processes and Polymers, 2013, 10, 141-149.	3.0	7
103	Nonequilibrium Plasma Polymerization of HFC-134a in a Dielectric Barrier Discharge Reactor: Polymer Characterization and a Proposed Mechanism for Polymer Formation. IEEE Transactions on Plasma Science, 2014, 42, 3095-3100.	1.3	7
104	Modeling and Experimental Study on the Thermal Decomposition of Perfluorooctanesulfonic Acid (PFOS) in an α-Alumina Reactor. Industrial & Engineering Chemistry Research, 2022, 61, 5453-5463.	3.7	7
105	Partial oxidation of methane by nitrous oxide. Energy & Fuels, 1990, 4, 285-290.	5.1	6
106	Kinetics of the thermal decomposition and isomerisation of pyrazine (1,4 diazine). Proceedings of the Combustion Institute, 1994, 25, 893-900.	0.3	6
107	The Pyrolysis of 3â€Picoline: Ab Initio Quantum Chemical and Experimental (Shock Tube) Kinetic Studies. Israel Journal of Chemistry, 1996, 36, 239-248.	2.3	6
108	Comparative Study on the Formation of Toxic Species from 4-chlorobiphenyl in Fires: Effect of Catalytic Surfaces. Procedia Engineering, 2013, 62, 350-358.	1.2	6

#	Article	IF	CITATIONS
109	Gas Phase Thermal Oxidation of Endosulfan and Formation of Polychlorinated Dibenzo- <i>p</i> -dioxins and Dibenzofurans. Environmental Science & Technology, 2016, 50, 10106-10113.	10.0	6
110	Synthesis of Vinylidene Fluoride via Reaction of Chlorodifluoromethane (HCFC-22) with Methane. Industrial & Engineering Chemistry Research, 2010, 49, 6010-6019.	3.7	5
111	Comparative Study of the Physicochemical Properties of Ortho-Substituted Aromatic Nitroso Compounds. Journal of Chemical & Engineering Data, 2013, 58, 1005-1010.	1.9	5
112	Water formation via HCl oxidation on Cu(100). Applied Surface Science, 2014, 299, 156-161.	6.1	5
113	Gas phase pyrolysis of endosulfan and formation of dioxin precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F). Proceedings of the Combustion Institute, 2017, 36, 1119-1127.	3.9	5
114	Mechanisms of thermal decomposition of cyclodiene pesticides, identification and possible mitigation of their toxic products. Proceedings of the Combustion Institute, 2019, 37, 1143-1150.	3.9	5
115	Thermal oxidation of dieldrin and concomitant formation of toxic products including polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F). Chemosphere, 2019, 225, 209-216.	8.2	5
116	Theoretical Study on the Thermodynamic Properties and Self-Decomposition of Methylbenzenediol Isomers. Journal of Physical Chemistry A, 2010, 114, 11751-11760.	2.5	4
117	Characterization of Polymer Synthesized from the Nonequilibrium Plasma Conversion of CFC-12 and Methane in a Dielectric Barrier Discharge Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 19380-19386.	3.7	4
118	Experimental investigation of the reaction of HCFC-22 and methane in a dielectric barrier discharge non-equilibrium plasma. Chemical Engineering Journal, 2016, 301, 73-82.	12.7	4
119	Reaction of dichloromethane under non-oxidative conditions in a dielectric barrier discharge reactor and characterisation of the resultant polymer. Chemical Engineering Journal, 2016, 290, 499-506.	12.7	4
120	Oxidation of 4-bromo-4'-chlorobiphenyl, model species for forming mixed halogenated aromatic compounds. International Journal of Environment and Pollution, 2017, 61, 243.	0.2	4
121	Mechanistic Study of Trapping of NO by 3,5-Dibromo-4-Nitrosobenzene Sulfonate. Industrial & Engineering Chemistry Research, 2012, 51, 14325-14336.	3.7	3
122	Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed. Journal of Hazardous Materials, 2014, 280, 38-45.	12.4	3
123	Homogeneous nucleation of cyclohexane: A double-diaphragm shock tube study. Journal of Colloid and Interface Science, 1981, 83, 547-557.	9.4	2
124	Double-diaphragm shock tube - Comparison between theory and experiment. AIAA Journal, 1981, 19, 405-406.	2.6	2
125	Study on the Reaction of CCl ₂ F ₂ with CH ₄ in a Dielectric Barrier Discharge Nonequilibrium Plasma. Plasma Processes and Polymers, 2013, 10, n/a-n/a.	3.0	2
126	Trapping of Nitric Oxide, Generated during Sensitization of Ammonium Nitrate Emulsion Explosive, by Aromatic Nitroso Sulfonates. Industrial & Engineering Chemistry Research, 2013, 52, 10561-10568.	3.7	2

#	Article	IF	CITATIONS
127	Experimental Study on the Reaction of CCl3F and CH4in a Dielectric Barrier Discharge Nonequilibrium Plasma Reactor. Industrial & Engineering Chemistry Research, 2016, 55, 463-471.	3.7	2
128	Oxidation of CO by SO2: A Theoretical Study. ChemInform, 2005, 36, no.	0.0	1
129	Non-thermal plasma polymerization of HFC-134a in a dielectric barrier discharge reactor; Polymer characterization and understanding the mechanism of polymer formation. , 2013, , .		1
130	<i>S</i> -Nitrosation of Aminothiones. Journal of Organic Chemistry, 2015, 80, 6951-6958.	3.2	1
131	Process for Chloroform Decomposition: Nonthermal Plasma Polymerization with Methane and Hydrogen. Industrial & Engineering Chemistry Research, 2018, 57, 9075-9082.	3.7	1
132	Modelling studies of gas-phase processes in OXCO reactors. Studies in Surface Science and Catalysis, 1994, , 137-142.	1.5	0
133	An ab initio Quantum Chemical and Kinetic Study of the NNH + O Reaction Potential Energy Surface: How Important Is this Route to NO in Combustion?. ChemInform, 2003, 34, no.	0.0	0
134	Reaction of chloroform in a non-oxidative atmosphere using dielectric barrier discharge. , 2013, , .		0
135	Non-thermal plasma polymerization of HFC-134A in a dielectric barrier discharge reactor; Polymer characterization and a proposed mechanism for polymer formation. , 2013, , .		0