
Jiri Damborsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6151499/publications.pdf Version: 2024-02-01

LIDI DAMBODSKY

#	Article	IF	CITATIONS
1	Virtual screening of potential anticancer drugs based on microbial products. Seminars in Cancer Biology, 2022, 86, 1207-1217.	9.6	6
2	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	14.5	46
3	Tools for computational design and high-throughput screening of therapeutic enzymes. Advanced Drug Delivery Reviews, 2022, 183, 114143.	13.7	23
4	Computer-aided engineering of staphylokinase toward enhanced affinity and selectivity for plasmin. Computational and Structural Biotechnology Journal, 2022, 20, 1366-1377.	4.1	4
5	Mechanism-Based Design of Efficient PET Hydrolases. ACS Catalysis, 2022, 12, 3382-3396.	11.2	104
6	Extended Mechanism of the Plasminogen Activator Staphylokinase Revealed by Global Kinetic Analysis: 1000-fold Higher Catalytic Activity than That of Clinically Used Alteplase. ACS Catalysis, 2022, 12, 3807-3814.	11.2	7
7	LoopGrafter: a web tool for transplanting dynamical loops for protein engineering. Nucleic Acids Research, 2022, 50, W465-W473.	14.5	11
8	CalFitter 2.0: Leveraging the power of singular value decomposition to analyse protein thermostability. Nucleic Acids Research, 2022, , .	14.5	2
9	Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling. Jacs Au, 2022, 2, 1324-1337.	7.9	7
10	A Nonconventional Archaeal Fluorinase Identified by In Silico Mining for Enhanced Fluorine Biocatalysis. ACS Catalysis, 2022, 12, 6570-6577.	11.2	20
11	Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase. Nature Catalysis, 2022, 5, 534-544.	34.4	46
12	Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnology Advances, 2022, 60, 108009.	11.7	12
13	Increased occurrence of Treponema spp. and double-species infections in patients with Alzheimer's disease. Science of the Total Environment, 2022, 844, 157114.	8.0	7
14	FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Briefings in Bioinformatics, 2021, 22, .	6.5	37
15	FireProtDB: database of manually curated protein stability data. Nucleic Acids Research, 2021, 49, D319-D324.	14.5	63
16	Development and Testing of Thrombolytics in Stroke. Journal of Stroke, 2021, 23, 12-36.	3.2	14
17	Substrate inhibition by the blockage of product release and its control by tunnel engineering. RSC Chemical Biology, 2021, 2, 645-655.	4.1	43
18	Multi-pathogen infections and Alzheimer's disease. Microbial Cell Factories, 2021, 20, 25.	4.0	51

#	Article	IF	CITATIONS
19	Fully Automated Ancestral Sequence Reconstruction using FireProt ^{ASR} . Current Protocols, 2021, 1, e30.	2.9	12
20	Substrate Anchoring and Flexibility Reduction in CYP153A _{<i>M.aq</i>} Leads to Highly Improved Efficiency toward Octanoic Acid. ACS Catalysis, 2021, 11, 3182-3189.	11.2	27
21	The tetrameric structure of the novel haloalkane dehalogenase DpaA from <i>Paraglaciecola agarilytica</i> NO2. Acta Crystallographica Section D: Structural Biology, 2021, 77, 347-356.	2.3	5
22	Computational design of enzymes for biotechnological applications. Biotechnology Advances, 2021, 47, 107696.	11.7	51
23	Exploring mechanism of enzyme catalysis by on-chip transient kinetics coupled with global data analysis and molecular modeling. CheM, 2021, 7, 1066-1079.	11.7	27
24	Promiscuous Dehalogenase Activity of the Epoxide Hydrolase CorEH from <i>Corynebacterium</i> sp. C12. ACS Catalysis, 2021, 11, 6113-6120.	11.2	5
25	Engineering theÂprotein dynamics of anÂancestral luciferase. Nature Communications, 2021, 12, 3616.	12.8	54
26	Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. European Journal of Medicinal Chemistry, 2021, 219, 113434.	5.5	9
27	Web-based tools for computational enzyme design. Current Opinion in Structural Biology, 2021, 69, 19-34.	5.7	38
28	Stabilization of Haloalkane Dehalogenase Structure by Interfacial Interaction with Ionic Liquids. Crystals, 2021, 11, 1052.	2.2	4
29	Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning. Computational and Structural Biotechnology Journal, 2021, 19, 3187-3197.	4.1	11
30	SoluProt: prediction of soluble protein expression in <i>Escherichia coli</i> . Bioinformatics, 2021, 37, 23-28.	4.1	66
31	Computational Enzyme Stabilization Can Affect Folding Energy Landscapes and Lead to Catalytically Enhanced Domain-Swapped Dimers. ACS Catalysis, 2021, 11, 12864-12885.	11.2	10
32	Description of Transport Tunnel in Haloalkane Dehalogenase Variant LinB D147C+L177C from Sphingobium japonicum. Catalysts, 2021, 11, 5.	3.5	1
33	Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA. International Journal of Molecular Sciences, 2021, 22, 11992.	4.1	0
34	CaverDock: A Novel Method for the Fast Analysis of Ligand Transport. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1625-1638.	3.0	24
35	Machine Learning in Enzyme Engineering. ACS Catalysis, 2020, 10, 1210-1223.	11.2	250
36	An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation. ChemCatChem, 2020, 12, 2032-2039.	3.7	9

#	Article	IF	CITATIONS
37	Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics. Computational and Structural Biotechnology Journal, 2020, 18, 1497-1508.	4.1	10
38	Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst. Chemical Science, 2020, 11, 11162-11178.	7.4	13
39	EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Research, 2020, 48, W104-W109.	14.5	51
40	Structural and catalytic effects of surface loop-helix transplantation within haloalkane dehalogenase family. Computational and Structural Biotechnology Journal, 2020, 18, 1352-1362.	4.1	2
41	A Haloalkane Dehalogenase from Saccharomonospora viridis Strain DSM 43017, a Compost Bacterium with Unusual Catalytic Residues, Unique (<i>S</i>)-Enantiopreference, and High Thermostability. Applied and Environmental Microbiology, 2020, 86, .	3.1	7
42	DockVis: Visual Analysis of Molecular Docking Trajectories. Computer Graphics Forum, 2020, 39, 452-464.	3.0	2
43	Exploration of enzyme diversity: High-throughput techniques for protein production and microscale biochemical characterization. Methods in Enzymology, 2020, 643, 51-85.	1.0	5
44	Fluorescent substrates for haloalkane dehalogenases: Novel probes for mechanistic studies and protein labeling. Computational and Structural Biotechnology Journal, 2020, 18, 922-932.	4.1	9
45	The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step. Computational and Structural Biotechnology Journal, 2020, 18, 805-813.	4.1	14
46	Development of Fluorescent Assay for Monitoring of Dehalogenase Activity. Biotechnology Journal, 2019, 14, 1800144.	3.5	7
47	Analysis of Long Molecular Dynamics Simulations Using Interactive Focus+Context Visualization. Computer Graphics Forum, 2019, 38, 441-453.	3.0	11
48	Structural Biology and Protein Engineering of Thrombolytics. Computational and Structural Biotechnology Journal, 2019, 17, 917-938.	4.1	45
49	Crystallization and Crystallographic Analysis of a Bradyrhizobium Elkanii USDA94 Haloalkane Dehalogenase Variant with an Eliminated Halide-Binding Site. Crystals, 2019, 9, 375.	2.2	3
50	Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Analytical Chemistry, 2019, 91, 10008-10015.	6.5	20
51	Deciphering the Structural Basis of High Thermostability of Dehalogenase from Psychrophilic Bacterium Marinobacter sp. ELB17. Microorganisms, 2019, 7, 498.	3.6	18
52	Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Research, 2019, 47, W414-W422.	14.5	138
53	Crystal structure of the cold-adapted haloalkane dehalogenase DpcA from <i>Psychrobacter cryohalolentis</i> K5. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 324-331.	0.8	5
54	CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics, 2019, 35, 4986-4993.	4.1	51

#	Article	IF	CITATIONS
55	Engineering enzyme access tunnels. Biotechnology Advances, 2019, 37, 107386.	11.7	128
56	Light-Emitting Dehalogenases: Reconstruction of Multifunctional Biocatalysts. ACS Catalysis, 2019, 9, 4810-4823.	11.2	33
57	Structure-Function Relationships and Engineering of Haloalkane Dehalogenases. , 2019, , 367-387.		3
58	Transhalogenation Catalysed by Haloalkane Dehalogenases Engineered to Stop Natural Pathway at Intermediate. Advanced Synthesis and Catalysis, 2019, 361, 2438.	4.3	4
59	Fluorescent pH Indicators for Neutral to Near-Alkaline Conditions Based on 9-Iminopyronin Derivatives. ACS Omega, 2019, 4, 5479-5485.	3.5	17
60	Surface-enhanced Raman Spectroscopy in Microfluidic Chips for Directed Evolution of Enzymes and Environmental Monitoring. , 2019, , .		0
61	Computational Modelling of Metabolic Burden and Substrate Toxicity in Escherichia coli Carrying a Synthetic Metabolic Pathway. Microorganisms, 2019, 7, 553.	3.6	9
62	Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock. Frontiers in Chemistry, 2019, 7, 709.	3.6	19
63	Fibroblast Growth Factor 2 Protein Stability Provides Decreased Dependence on Heparin for Induction of FGFR Signaling and Alters ERK Signaling Dynamics. Frontiers in Cell and Developmental Biology, 2019, 7, 331.	3.7	30
64	Exploring the challenges of computational enzyme design by rebuilding the active site of a dehalogenase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 389-394.	7.1	28
65	Computational Design of Stable and Soluble Biocatalysts. ACS Catalysis, 2019, 9, 1033-1054.	11.2	87
66	Differences in crystallization of several selected haloalkane dehalogenases and their mutation variants. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e126-e126.	0.1	0
67	Impact of the access tunnel engineering on catalysis is strictly ligandâ€specific. FEBS Journal, 2018, 285, 1456-1476.	4.7	50
68	Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization. ACS Catalysis, 2018, 8, 2402-2412.	11.2	58
69	Computerâ€assisted engineering of hyperstable fibroblast growth factor 2. Biotechnology and Bioengineering, 2018, 115, 850-862.	3.3	49
70	Gram-scale production of recombinant microbial enzymes in shake flasks. FEMS Microbiology Letters, 2018, 365, .	1.8	5
71	Computational Analysis of Protein Tunnels and Channels. Methods in Molecular Biology, 2018, 1685, 25-42.	0.9	23
72	A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity. Applied and Environmental Microbiology, 2018, 84, .	3.1	12

#	Article	IF	CITATIONS
73	Molecular Gating of an Engineered Enzyme Captured in Real Time. Journal of the American Chemical Society, 2018, 140, 17999-18008.	13.7	25
74	Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors, 2018, 18, 3212.	3.8	6
75	Sensitive operation of enzyme-based biodevices by advanced signal processing. PLoS ONE, 2018, 13, e0198913.	2.5	2
76	Evolutionary Analysis As a Powerful Complement to Energy Calculations for Protein Stabilization. ACS Catalysis, 2018, 8, 9420-9428.	11.2	20
77	HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Research, 2018, 46, W356-W362.	14.5	171
78	CalFitter: a web server for analysis of protein thermal denaturation data. Nucleic Acids Research, 2018, 46, W344-W349.	14.5	30
79	CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics, 2018, 34, 3586-3588.	4.1	244
80	Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site. Journal of Biological Chemistry, 2018, 293, 11505-11512.	3.4	11
81	Haloalkane Dehalogenases From Marine Organisms. Methods in Enzymology, 2018, 605, 203-251.	1.0	15
82	Computational Study of Protein-Ligand Unbinding for Enzyme Engineering. Frontiers in Chemistry, 2018, 6, 650.	3.6	35
83	Structural characterization and comparison of crystallization behaviour of selected haloalkane dehalogenases. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e185-e185.	0.1	0
84	Surface-enhanced Raman spectroscopy of chloroalkanes in microfluidic chips. , 2018, , .		0
85	Different Structural Origins of the Enantioselectivity of Haloalkane Dehalogenases toward Linear βâ€Haloalkanes: Open–Solvated versus Occluded–Desolvated Active Sites. Angewandte Chemie, 2017, 129, 4797-4801.	2.0	0
86	Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. ChemBioChem, 2017, 18, 1448-1456.	2.6	45
87	NewProt – a protein engineering portal. Protein Engineering, Design and Selection, 2017, 30, 441-447.	2.1	11
88	FireProt: web server for automated design of thermostable proteins. Nucleic Acids Research, 2017, 45, W393-W399.	14.5	104
89	Different Structural Origins of the Enantioselectivity of Haloalkane Dehalogenases toward Linear βâ€Haloalkanes: Open–Solvated versus Occluded–Desolvated Active Sites. Angewandte Chemie - International Edition, 2017, 56, 4719-4723.	13.8	15
90	Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Medicinal Research Reviews, 2017, 37, 1095-1139.	10.5	65

#	Article	IF	CITATIONS
91	Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 2017, 35, 845-866.	11.7	240
92	Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating. Scientific Reports, 2017, 7, 16321.	3.3	39
93	Catalytic Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by Computational Modeling. Journal of Chemical Information and Modeling, 2017, 57, 1970-1989.	5.4	22
94	Metagenome-derived haloalkane dehalogenases with novel catalytic properties. Applied Microbiology and Biotechnology, 2017, 101, 6385-6397.	3.6	8
95	Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels. FEBS Journal, 2017, 284, 134-148.	4.7	12
96	Wedelolactone Acts as Proteasome Inhibitor in Breast Cancer Cells. International Journal of Molecular Sciences, 2017, 18, 729.	4.1	25
97	Structure-Function Relationships and Engineering of Haloalkane Dehalogenases. , 2017, , 1-21.		0
98	Haloalkane dehalogenases as a subject for crystallographic studies. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C155-C155.	0.1	0
99	HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Research, 2016, 44, W479-W487.	14.5	76
100	Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants. International Journal of Pharmaceutics, 2016, 509, 41-49.	5.2	44
101	Enzyme-Based Test Strips for Visual or Photographic Detection and Quantitation of Gaseous Sulfur Mustard. Analytical Chemistry, 2016, 88, 6044-6049.	6.5	36
102	Engineering a de Novo Transport Tunnel. ACS Catalysis, 2016, 6, 7597-7610.	11.2	84
103	Discovery of Novel Haloalkane Dehalogenase Inhibitors. Applied and Environmental Microbiology, 2016, 82, 1958-1965.	3.1	9
104	Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application. Biosensors and Bioelectronics, 2016, 84, 97-105.	10.1	58
105	CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 505-517.	3.0	108
106	PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions. PLoS Computational Biology, 2016, 12, e1004962.	3.2	149
107	Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microbial Cell Factories, 2015, 14, 201.	4.0	145
108	Structure-functional relationships of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s218-s218.	0.1	0

#	Article	IF	CITATIONS
109	Mechanism-Based Discovery of Novel Substrates of Haloalkane Dehalogenases Using in Silico Screening. Journal of Chemical Information and Modeling, 2015, 55, 54-62.	5.4	23
110	Balancing the Stability–Activity Tradeâ€Off by Fineâ€Tuning Dehalogenase Access Tunnels. ChemCatChem, 2015, 7, 648-659.	3.7	39
111	Instability restricts signaling of multiple fibroblast growth factors. Cellular and Molecular Life Sciences, 2015, 72, 2445-2459.	5.4	48
112	Site-Specific Analysis of Protein Hydration Based on Unnatural Amino Acid Fluorescence. Journal of the American Chemical Society, 2015, 137, 4988-4992.	13.7	25
113	Interfacing Microwells with Nanoliter Compartments: A Sampler Generating High-Resolution Concentration Gradients for Quantitative Biochemical Analyses in Droplets. Analytical Chemistry, 2015, 87, 624-632.	6.5	39
114	FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLoS Computational Biology, 2015, 11, e1004556.	3.2	144
115	PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations. PLoS Computational Biology, 2014, 10, e1003440.	3.2	593
116	Stepwise enhancement of catalytic performance of haloalkane dehalogenase LinB towards β-hexachlorocyclohexane. AMB Express, 2014, 4, 72.	3.0	11
117	Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1884-1897.	2.5	20
118	Dynamics and hydration explain failed functional transformation in dehalogenase design. Nature Chemical Biology, 2014, 10, 428-430.	8.0	52
119	Microscopic monitoring provides information on structure and properties during biocatalyst immobilization. Biotechnology Journal, 2014, 9, 852-860.	3.5	11
120	Computational tools for designing and engineering enzymes. Current Opinion in Chemical Biology, 2014, 19, 8-16.	6.1	185
121	A Pseudomonas putida Strain Genetically Engineered for 1,2,3-Trichloropropane Bioremediation. Applied and Environmental Microbiology, 2014, 80, 5467-5476.	3.1	42
122	Maximizing the Efficiency of Multienzyme Process by Stoichiometry Optimization. ChemBioChem, 2014, 15, 1891-1895.	2.6	31
123	Comparison of catalysis by haloalkane dehalogenases in aqueous solutions of deep eutectic and organic solvents. Green Chemistry, 2014, 16, 2754-2761.	9.0	28
124	CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures. Bioinformatics, 2014, 30, 2684-2685.	4.1	135
125	Immobilized Synthetic Pathway for Biodegradation of Toxic Recalcitrant Pollutant 1,2,3-Trichloropropane. Environmental Science & Technology, 2014, 48, 6859-6866.	10.0	54
126	Computer-Assisted Engineering of the Synthetic Pathway for Biodegradation of a Toxic Persistent Pollutant. ACS Synthetic Biology, 2014, 3, 172-181.	3.8	39

#	Article	IF	CITATIONS
127	Fructose 1â€phosphate is the one and only physiological effector of the Cra (FruR) regulator of <i>Pseudomonas putida</i> . FEBS Open Bio, 2014, 4, 377-386.	2.3	28
128	Crystallographic analysis of 1,2,3-trichloropropane biodegradation by the haloalkane dehalogenase DhaA31. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 209-217.	2.5	10
129	Computational Tools for Designing Smart Libraries. Methods in Molecular Biology, 2014, 1179, 291-314.	0.9	21
130	Online Monitoring of Biodegradation Processes Using Enzymatic Biosensors. , 2014, , 155-179.		1
131	Crystal structure of the novel haloalkane dehalogenases. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1678-C1678.	0.1	1
132	Sphingobium baderi sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 673-678.	1.7	29
133	The effect of a unique halideâ€stabilizing residue on the catalytic properties of haloalkane dehalogenase <scp>D</scp> at <scp>A</scp> from <i><scp>A</scp>grobacteriumÂtumefaciens </i> <scp>C</scp> 58. FEBS Journal, 2013, 280, 3149-3159.	4.7	20
134	Engineering Enzyme Stability and Resistance to an Organic Cosolvent by Modification of Residues in the Access Tunnel. Angewandte Chemie - International Edition, 2013, 52, 1959-1963.	13.8	113
135	Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catalysis, 2013, 3, 2823-2836.	11.2	514
136	Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 667-672.	1.7	46
137	Organic coâ€solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnology Journal, 2013, 8, 719-729.	3.5	36
138	Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnology Advances, 2013, 31, 38-49.	11.7	74
139	DspA from Strongylocentrotus purpuratus: The first biochemically characterized haloalkane dehalogenase of non-microbial origin. Biochimie, 2013, 95, 2091-2096.	2.6	26
140	Gates of Enzymes. Chemical Reviews, 2013, 113, 5871-5923.	47.7	216
141	New Functional Handle for Use as a Self-Reporting Contrast and Delivery Agent in Nanomedicine. Journal of the American Chemical Society, 2013, 135, 9518-9524.	13.7	52
142	Interaction of organic solvents with protein structures at protein-solvent interface. Journal of Molecular Modeling, 2013, 19, 4701-4711.	1.8	33
143	Cation-Specific Effects on Enzymatic Catalysis Driven by Interactions at the Tunnel Mouth. Journal of Physical Chemistry B, 2013, 117, 6394-6402.	2.6	20
144	Varenicline and nicotine enhance GABAergic synaptic transmission in rat CA1 hippocampal and medial septum/diagonal band neurons. Life Sciences, 2013, 92, 337-344.	4.3	15

#	Article	IF	CITATIONS
145	Expansion of Access Tunnels and Activeâ€Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents. ChemBioChem, 2013, 14, 890-897.	2.6	33
146	Are Time-Dependent Fluorescence Shifts at the Tunnel Mouth of Haloalkane Dehalogenase Enzymes Dependent on the Choice of the Chromophore?. Journal of Physical Chemistry B, 2013, 117, 7898-7906.	2.6	14
147	Release of Halide Ions from the Buried Active Site of the Haloalkane Dehalogenase LinB Revealed by Stopped-Flow Fluorescence Analysis and Free Energy Calculations. Journal of Physical Chemistry B, 2013, 117, 14329-14335.	2.6	4
148	Haloalkane dehalogenases: Biotechnological applications. Biotechnology Journal, 2013, 8, 32-45.	3.5	126
149	Sphingobium czechense sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 723-728.	1.7	18
150	Differences in crystallization of two LinB variants from <i>Sphingobium japonicum</i> UT26. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 284-287.	0.7	5
151	Crystallographic analysis of new psychrophilic haloalkane dehalogenases: DpcA from <i>Psychrobacter cryohalolentis</i> K5 and DmxA from <i>Marinobacter</i> sp. ELB17. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 683-688.	0.7	8
152	Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family. PLoS ONE, 2013, 8, e79974.	2.5	24
153	The PCNA Interaction Protein Box Sequence in Rad54 Is an Integral Part of Its ATPase Domain and Is Required for Efficient DNA Repair and Recombination. PLoS ONE, 2013, 8, e82630.	2.5	9
154	CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Computational Biology, 2012, 8, e1002708.	3.2	991
155	Effects of developmental nicotine exposure in rats on decision-making in adulthood. Behavioural Pharmacology, 2012, 23, 34-42.	1.7	29
156	A Single Mutation in a Tunnel to the Active Site Changes the Mechanism and Kinetics of Product Release in Haloalkane Dehalogenase LinB. Journal of Biological Chemistry, 2012, 287, 29062-29074.	3.4	61
157	Biochemical Characterization of a Novel Haloalkane Dehalogenase from a Cold-Adapted Bacterium. Applied and Environmental Microbiology, 2012, 78, 4995-4998.	3.1	33
158	Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. Journal of Experimental Botany, 2012, 63, 2203-2215.	4.8	27
159	Characterization of Protein Clycosylation in Francisella tularensis subsp. holarctica. Molecular and Cellular Proteomics, 2012, 11, M111.015016-1-M111.015016-12.	3.8	36
160	Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Research, 2012, 40, 3775-3775.	14.5	0
161	Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing. Sensors and Actuators B: Chemical, 2012, 161, 93-99.	7.8	21
162	Analyzer for fluorescent biosensing application. , 2011, , .		0

#	Article	IF	CITATIONS
163	Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from <i>Bradyrhizobium japonicum</i> USDA110: the effect of pH and temperature. FEBS Journal, 2011, 278, 2728-2738.	4.7	22
164	Development of a Crystallization Protocol for the DbeA1 Variant of Novel Haloalkane Dehalogenase fromBradyrhizobium elkaniUSDA94. Crystal Growth and Design, 2011, 11, 516-519.	3.0	3
165	The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo. Proteome Science, 2011, 9, 68.	1.7	23
166	Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 253-257.	0.7	5
167	Crystallization and crystallographic analysis of theRhodococcus rhodochrousNCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 397-400.	0.7	4
168	Elicitin–membrane interaction is driven by a positive charge on the protein surface: Role of Lys13 residue in lipids loading and resistance induction. Plant Physiology and Biochemistry, 2011, 49, 321-328.	5.8	15
169	Biochemical Characteristics of the Novel Haloalkane Dehalogenase DatA, Isolated from the Plant Pathogen <i>Agrobacterium tumefaciens</i> C58. Applied and Environmental Microbiology, 2011, 77, 1881-1884.	3.1	36
170	Substrate specificity of haloalkane dehalogenases. Biochemical Journal, 2011, 435, 345-354.	3.7	92
171	Molecular Bases of Enantioselectivity of Haloalkane Dehalogenase DbjA. Nihon Kessho Gakkaishi, 2011, 53, 124-129.	0.0	0
172	CETOCOEN Project: From the Laboratory to the Field and Beyond. IFIP Advances in Information and Communication Technology, 2011, , 491-499.	0.7	0
173	Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons. Analytical and Bioanalytical Chemistry, 2010, 398, 1891-1898.	3.7	57
174	Enantioselectivity of Haloalkane Dehalogenases and its Modulation by Surface Loop Engineering. Angewandte Chemie - International Edition, 2010, 49, 6111-6115.	13.8	96
175	Systems biology at work. Current Opinion in Biotechnology, 2010, 21, 498-501.	6.6	4
176	Atomic resolution studies of haloalkane dehalogenases DhaA04, DhaA14 and DhaA15 with engineered access tunnels. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 962-969.	2.5	12
177	Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation. Biological Chemistry, 2010, 391, 197-205.	2.5	17
178	Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Research, 2010, 38, 4708-4721.	14.5	85
179	Biochemical Characterization of Haloalkane Dehalogenases DrbA and DmbC, Representatives of a Novel Subfamily. Applied and Environmental Microbiology, 2009, 75, 5157-5160.	3.1	34
180	Crystallization and preliminary X-ray analysis of a novel haloalkane dehalogenase DbeA fromBradyrhizobium elkaniUSDA94. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 353-356.	0.7	13

#	Article	IF	CITATIONS
181	Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nature Chemical Biology, 2009, 5, 727-733.	8.0	238
182	Computational tools for designing and engineering biocatalysts. Current Opinion in Chemical Biology, 2009, 13, 26-34.	6.1	99
183	Editorial: Protein design and engineering for biocatalysis. Biotechnology Journal, 2009, 4, 439-439.	3.5	0
184	Nanosecond Time-Dependent Stokes Shift at the Tunnel Mouth of Haloalkane Dehalogenases. Journal of the American Chemical Society, 2009, 131, 494-501.	13.7	42
185	Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations. Journal of Molecular Biology, 2009, 392, 1339-1356.	4.2	89
186	Chiral aliphatic hydroxy compounds in nature: A review of biological functions and practical applications. Collection of Czechoslovak Chemical Communications, 2009, 74, 1195-1278.	1.0	14
187	HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Research, 2009, 37, W376-W383.	14.5	160
188	Structural analysis of a novel type of haloalkane dehalogenase DbeA and mutant DbeA1. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s136-s137.	0.3	1
189	Crystals of DhaA mutants from <i>Rhodococcus rhodochrous</i> NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 137-140.	0.7	7
190	Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods. Proteins: Structure, Function and Bioinformatics, 2008, 70, 707-717.	2.6	24
191	Enzymatic Reaction Coupled with Flow-Injection Analysis with Charged Aerosol, Coulometric, or Amperometric Detection for Estimation of Contamination of the Environment by Pesticides. Chromatographia, 2008, 67, 47-53.	1.3	7
192	Functional analysis of the aglyconeâ€binding site of the maize βâ€glucosidase Zmâ€p60.1. FEBS Journal, 2008, 275, 6123-6135.	4.7	14
193	Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast. Oncogene, 2008, 27, 1243-1252.	5.9	22
194	Weak Activity of Haloalkane Dehalogenase LinB with 1,2,3-Trichloropropane Revealed by X-Ray Crystallography and Microcalorimetry. Applied and Environmental Microbiology, 2007, 73, 2005-2008.	3.1	25
195	Quantitative structure–activity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: Wing spot test of Drosophila melanogaster. Chemosphere, 2007, 67, 152-159.	8.2	17
196	The identification of catalytic pentad in the haloalkane dehalogenase DhmA from Mycobacterium avium N85: Reaction mechanism and molecular evolution. Journal of Structural Biology, 2007, 157, 384-392.	2.8	14
197	Exploring the Binding Sites of the Haloalkane Dehalogenase DhlA from <i>Xanthobacter autotrophicus</i> GJ10. Biochemistry, 2007, 46, 9239-9249.	2.5	20
198	Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics. Journal of Molecular Graphics and Modelling, 2007, 26, 643-651.	2.4	35

#	Article	IF	CITATIONS
199	Crystallization and preliminary crystallographic analysis of a haloalkane dehalogenase, DbjA, fromBradyrhizobium japonicumUSDA110. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 294-296.	0.7	11
200	High occurrence of BRCA1 intragenic rearrangements in hereditary breast and ovarian cancer syndrome in the Czech Republic. BMC Medical Genetics, 2007, 8, 32.	2.1	45
201	Phylogenetic analysis of haloalkane dehalogenases. Proteins: Structure, Function and Bioinformatics, 2007, 67, 305-316.	2.6	82
202	Identification of tunnels in proteins, nucleic acids, inorganic materials and molecular ensembles. Biotechnology Journal, 2007, 2, 62-67.	3.5	53
203	Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Archives of Microbiology, 2007, 188, 313-325.	2.2	62
204	Expression of glycosylated haloalkane dehalogenase LinB in Pichia pastoris. Protein Expression and Purification, 2006, 46, 85-91.	1.3	10
205	Enzymes fight chemical weapons. Biotechnology Journal, 2006, 1, 1370-1380.	3.5	66
206	Perspectives: Biotechnology in Czech Republic, the past and the future. Biotechnology Journal, 2006, 1, 487-490.	3.5	2
207	Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling. Journal of Computer-Aided Molecular Design, 2006, 20, 375-383.	2.9	25
208	CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics, 2006, 7, 316.	2.6	453
209	Role of p53 Gene Mutation Type in B-CLL Prognosis Blood, 2006, 108, 4324-4324.	1.4	0
210	Binding of Fatty Acids to ?-Cryptogein: Quantitative Structure?Activity Relationships and Design of Selective Protein Mutants ChemInform, 2005, 36, no.	0.0	0
211	Two Rhizobial Strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, Encode Haloalkane Dehalogenases with Novel Structures and Substrate Specificities. Applied and Environmental Microbiology, 2005, 71, 4372-4379.	3.1	73
212	Cloning, Biochemical Properties, and Distribution of Mycobacterial Haloalkane Dehalogenases. Applied and Environmental Microbiology, 2005, 71, 6736-6745.	3.1	54
213	Degradation of β-Hexachlorocyclohexane by Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26. Applied and Environmental Microbiology, 2005, 71, 2183-2185.	3.1	72
214	Construction of Cryptogein Mutants, a Proteinaceous Elicitor fromPhytophthora, with Altered Abilities To Induce a Defense Reaction in Tobacco Cellsâ€. Biochemistry, 2005, 44, 6565-6572.	2.5	18
215	Quantitative Analysis of Substrate Specificity of Haloalkane Dehalogenase LinB fromSphingomonas paucimobilisUT26â€. Biochemistry, 2005, 44, 3390-3401.	2.5	68
216	PKD2 mutations in a Czech population with autosomal dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2004, 19, 1116-1122.	0.7	16

#	Article	IF	CITATIONS
217	Three-block bi-focal PLS (3BIF-PLS) and its application in QSAR. SAR and QSAR in Environmental Research, 2004, 15, 481-499.	2.2	10
218	Binding of Fatty Acids to β-Cryptogein:  Quantitative Structureâ^'Activity Relationships and Design of Selective Protein Mutants. Journal of Chemical Information and Computer Sciences, 2004, 44, 2126-2132.	2.8	9
219	Crystal Structure of Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 Ã Resolution:  Dynamics of Catalytic Residues,. Biochemistry, 2004, 43, 870-878.	2.5	82
220	Comparative binding energy analysis of haloalkane dehalogenase substrates: modelling of enzyme-substrate complexes by molecular docking and quantum mechanical calculations. Journal of Computer-Aided Molecular Design, 2003, 17, 299-311.	2.9	19
221	Retron reverse transcriptase rrtT is ubiquitous in strains of Salmonella enterica serovar Typhimurium. FEMS Microbiology Letters, 2003, 223, 281-286.	1.8	10
222	Haloalkane Dehalogenase LinB fromSphingomonas paucimobilisUT26:Â X-ray Crystallographic Studies of Dehalogenation of Brominated Substratesâ€,‡. Biochemistry, 2003, 42, 10104-10112.	2.5	43
223	Reconstruction of Mycobacterial Dehalogenase Rv2579 by Cumulative Mutagenesis of Haloalkane Dehalogenase LinB. Applied and Environmental Microbiology, 2003, 69, 2349-2355.	3.1	21
224	Modification of Activity and Specificity of Haloalkane Dehalogenase from Sphingomonas paucimobilis UT26 by Engineering of Its Entrance Tunnel. Journal of Biological Chemistry, 2003, 278, 52622-52628.	3.4	115
225	Catalytic Mechanism of the Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26. Journal of Biological Chemistry, 2003, 278, 45094-45100.	3.4	80
226	Characterization of a Novel Thermostable Mn(II)-dependent 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from a Polychlorinated Biphenyl- and Naphthalene-degrading Bacillus sp. JF8. Journal of Biological Chemistry, 2003, 278, 21483-21492.	3.4	66
227	Cloning and Expression of the Haloalkane Dehalogenase Gene dhmA from Mycobacterium avium N85 and Preliminary Characterization of DhmA. Applied and Environmental Microbiology, 2002, 68, 3724-3730.	3.1	50
228	Biodegradation of 1,2,3-Trichloropropane through Directed Evolution and Heterologous Expression of a Haloalkane Dehalogenase Gene. Applied and Environmental Microbiology, 2002, 68, 3582-3587.	3.1	112
229	Exploring the Structure and Activity of Haloalkane Dehalogenase from Sphingomonas paucimobilis UT26: Evidence for Product- and Water-Mediated Inhibition,. Biochemistry, 2002, 41, 4847-4855.	2.5	49
230	Halide-Stabilizing Residues of Haloalkane Dehalogenases Studied by Quantum Mechanic Calculations and Site-Directed Mutagenesisâ€. Biochemistry, 2002, 41, 14272-14280.	2.5	69
231	Impact of Orthogonal Signal Correction (OSC) on the Predictive Ability of CoMFA Models for the Ciliate Toxicity of Nitrobenzenes Dedicated to Professor Werner Klein, Schmallenberg (Germany), on the oaccastion of his 65th birthday. QSAR and Combinatorial Science, 2002, 21, 3.	1.2	20
232	Role of SdiA in Salmonella enterica serovar Typhimurium physiology and virulence. Archives of Microbiology, 2002, 178, 94-101.	2.2	23
233	Identification of Salmonella enterica serovar Typhimurium genes associated with growth suppression in stationary-phase nutrient broth cultures and in the chicken intestine. Archives of Microbiology, 2002, 178, 411-420.	2.2	27
234	Functionally relevant motions of haloalkane dehalogenases occur in the specificityâ€modulating cap domains. Protein Science, 2002, 11, 1206-1217.	7.6	16

#	Article	IF	CITATIONS
235	Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains. Protein Science, 2002, 11, 1206-1217.	7.6	40
236	Biochemical characterization of broad-specificity enzymes using multivariate experimental design and a colorimetric microplate assay: characterization of the haloalkane dehalogenase mutants. Journal of Microbiological Methods, 2001, 44, 149-157.	1.6	23
237	Comparative Binding Energy Analysis of the Substrate Specificity of Haloalkane Dehalogenase from Xanthobacter autotrophicus GJ10. Biochemistry, 2001, 40, 8905-8917.	2.5	42
238	Identification of protein fold and catalytic residues of γ-hexachlorocyclohexane dehydrochlorinase LinA. Proteins: Structure, Function and Bioinformatics, 2001, 45, 471-477.	2.6	40
239	Structure–specificity relationships for haloalkane dehalogenases. Environmental Toxicology and Chemistry, 2001, 20, 2681-2689.	4.3	44
240	Plectin repeats and modules: strategic cysteines and their presumed impact on cytolinker functions. BioEssays, 2001, 23, 1064-1069.	2.5	35
241	TRITON: graphic software for rational engineering of enzymes. Trends in Biochemical Sciences, 2001, 26, 71-73.	7.5	26
242	Molecular Dissection of Interactions between Rad51 and Members of the Recombination-Repair Group. Molecular and Cellular Biology, 2001, 21, 966-976.	2.3	70
243	Reaction Mechanism and Stereochemistry of γ-Hexachlorocyclohexane Dehydrochlorinase LinA. Journal of Biological Chemistry, 2001, 276, 7734-7740.	3.4	70
244	Insights into the Functional Architecture of the Catalytic Center of a Maize beta -Glucosidase Zm-p60.1. Plant Physiology, 2001, 127, 973-985.	4.8	7
245	STRUCTURE–SPECIFICITY RELATIONSHIPS FOR HALOALKANE DEHALOGENASES. Environmental Toxicology and Chemistry, 2001, 20, 2681.	4.3	5
246	Determination of haloalkane dehalogenase activity by capillary zone electrophoresis. Journal of Chromatography A, 2000, 895, 219-225.	3.7	10
247	Molecular characterization of the Thermomonospora curvataaglA gene encoding a thermotolerant alpha-1,4-glucosidase. Journal of Applied Microbiology, 2000, 88, 773-783.	3.1	6
248	Effect of the carbon source on assessment of degrading bacteria with the spread-plating technique duringin situ bioremediation. Folia Microbiologica, 2000, 45, 35-40.	2.3	6
249	TRITON: in silico construction of protein mutants and prediction of their activities. Bioinformatics, 2000, 16, 845-846.	4.1	28
250	Dehalogenation of Haloalkanes by <i>Mycobacterium tuberculosis</i> H37Rv and Other Mycobacteria. Applied and Environmental Microbiology, 2000, 66, 219-222.	3.1	51
251	Crystal Structure of the Haloalkane Dehalogenase fromSphingomonas paucimobilisUT26â€,‡. Biochemistry, 2000, 39, 14082-14086.	2.5	118
252	Stability of Complexes of Aromatic Amides with Bromide Anion:  Quantitative Structureâ^'Property Relationships. Journal of Chemical Information and Computer Sciences, 2000, 40, 1151-1157.	2.8	6

#	Article	IF	CITATIONS
253	Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Engineering, Design and Selection, 1999, 12, 989-998.	2.1	57
254	Title is missing!. Biotechnology Letters, 1999, 21, 835-838.	2.2	4
255	Tetrachloroethene-dehalogenating bacteria. Folia Microbiologica, 1999, 44, 247-262.	2.3	40
256	Identification of the catalytic triad in the haloalkane dehalogenase fromSphingomonas paucimobilisUT26. FEBS Letters, 1999, 446, 177-181.	2.8	47
257	Construction and Characterization of Histidine-Tagged Haloalkane Dehalogenase (LinB) of a New Substrate Class from a γ-Hexachlorocyclohexane-Degrading Bacterium, Sphingomonas paucimobilis UT26. Protein Expression and Purification, 1999, 17, 299-304.	1.3	45
258	Molecular orbital calculations to describe microbial reductive dechlorination of polychlorinated dioxins. Environmental Toxicology and Chemistry, 1998, 17, 988-997.	4.3	58
259	QSAR for acute toxicity of saturated and unsaturated halogenated aliphatic compounds. Chemosphere, 1998, 36, 1345-1365.	8.2	18
260	Quantitative structure-function and structure-stability relationships of purposely modified proteins. Protein Engineering, Design and Selection, 1998, 11, 21-30.	2.1	27
261	A Molecular Modeling Study of the Catalytic Mechanism of Haloalkane Dehalogenase. 2. Quantum Chemical Study of Complete Reaction Mechanism. Journal of Chemical Information and Computer Sciences, 1998, 38, 736-741.	2.8	32
262	Structure-Biodegradability Relationships for Chlorinated Dibenzo-p-Dioxins and Dibenzofurans. , 1998, , 165-228.		5
263	Computational site-directed mutagenesis of haloalkane dehalogenase in position 172. Protein Engineering, Design and Selection, 1998, 11, 901-907.	2.1	19
264	Computer modelling of microbial hydrolytic dehalogenation. Pure and Applied Chemistry, 1998, 70, 1375-1383.	1.9	8
265	Mechanism-based Quantitative Structure–Biodegradability Relationships for Hydrolytic Dehalogenation of Chloro- and Bromo-Alkenes. QSAR and Combinatorial Science, 1998, 17, 450-458.	1.2	10
266	MOLECULAR ORBITAL CALCULATIONS TO DESCRIBE MICROBIAL REDUCTIVE DECHLORINATION OF POLYCHLORINATED DIOXINS. Environmental Toxicology and Chemistry, 1998, 17, 988.	4.3	4
267	A Molecular Modeling Study of the Catalytic Mechanism of Haloalkane Dehalogenase:  1. Quantum Chemical Study of the First Reaction Step. Journal of Chemical Information and Computer Sciences, 1997, 37, 562-568.	2.8	50
268	Repositioning the Catalytic Triad Aspartic Acid of Haloalkane Dehalogenase:  Effects on Stability, Kinetics, and Structure. Biochemistry, 1997, 36, 9571-9580.	2.5	59
269	Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols. Chemosphere, 1997, 34, 429-446.	8.2	54
270	Quantitative Structure-Function Relationships of the Single-Point Mutants of Haloalkane Dehalogenase: A Multivariate Approach. QSAR and Combinatorial Science, 1997, 16, 126-135.	1.2	18

#	Article	IF	CITATIONS
271	Engineering CYP153A M.aq to Oxyfunctionalize its Inhibitor Dodecylamine Using a LC/MS Based Rapid Flow Analysis Screening. ChemCatChem, 0, , .	3.7	1