C Korsi Dumenyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6150566/publications.pdf

Version: 2024-02-01

28	1,227	15	25
papers	citations	h-index	g-index
30	30	30	897
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Applied and Environmental Microbiology, 1995, 61, 1959-1967.	3.1	255
2	Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. Journal of Bacteriology, 1995, 177, 5108-5115.	2.2	218
3	Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology (United Kingdom), 1996, 142, 427-434.	1.8	102
4	The RsmA ⁻ Mutants of <i>Erwinia carotovora</i> subsp. <i>carotovora</i> Strain Ecc71 Overexpress <i>hrpN_{ECC}</i> and Elicit a Hypersensitive Reaction-like Response in Tobacco Leaves. Molecular Plant-Microbe Interactions, 1996, 9, 565.	2.6	80
5	The Exopolysaccharide of <i>Xylella fastidiosa</i> Is Essential for Biofilm Formation, Plant Virulence, and Vector Transmission. Molecular Plant-Microbe Interactions, 2013, 26, 1044-1053.	2.6	62
6	Title is missing!. European Journal of Plant Pathology, 1998, 104, 569-582.	1.7	61
7	Differentiation of Strains of Xylella fastidiosa Infecting Grape, Almonds, and Oleander Using a Multiprimer PCR Assay. Plant Disease, 2006, 90, 1382-1388.	1.4	60
8	rsmC of the Soft-Rotting Bacterium Erwinia carotovora subsp. carotovora Negatively Controls Extracellular Enzyme and Harpin Ecc Production and Virulence by Modulating Levels of Regulatory RNA (rsmB) and RNA-Binding Protein (RsmA). Journal of Bacteriology, 1999, 181, 6042-6052.	2.2	60
9	Plant Hosts of Xylella fastidiosa In and Near Southern California Vineyards. Plant Disease, 2004, 88, 1255-1261.	1.4	59
10	Molecular Characterization of Global Regulatory RNA Species That Control Pathogenicity Factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae. Journal of Bacteriology, 2001, 183, 1870-1880.	2.2	43
11	The Gene Encoding NAD-Dependent Epimerase/Dehydratase, wcaG, Affects Cell Surface Properties, Virulence, and Extracellular Enzyme Production in the Soft Rot Phytopathogen, Pectobacterium carotovorum. Microorganisms, 2019, 7, 172.	3.6	43
12	Characterization of Regulatory Pathways in <i>Xylella fastidiosa</i> : Genes and Phenotypes Controlled by <i>gacA</i> . Applied and Environmental Microbiology, 2009, 75, 2275-2283.	3.1	39
13	Characterization of Regulatory Pathways in <i>Xylella fastidiosa</i> : Genes and Phenotypes Controlled by <i>algU</i> . Applied and Environmental Microbiology, 2007, 73, 6748-6756.	3.1	25
14	CorA, the magnesium/nickel/cobalt transporter, affects virulence and extracellular enzyme production in the soft rot pathogen <i>Pectobacterium carotovorum</i> . Molecular Plant Pathology, 2012, 13, 58-71.	4.2	22
15	Effect of Host Plant Xylem Fluid on Growth, Aggregation, and Attachment of Xylella fastidiosa. Journal of Chemical Ecology, 2007, 33, 493-500.	1.8	17
16	The Bacterial Soft Rot Pathogens, Pectobacterium carotovorum and P. atrosepticum, Respond to Different Classes of Virulence-Inducing Host Chemical Signals. Horticulturae, 2020, 6, 13.	2.8	15
17	Antibacterial Properties of Citric Acid/ \hat{I}^2 -Alanine Carbon Dots against Gram-Negative Bacteria. Nanomaterials, 2021, 11, 2012.	4.1	15
18	Plant regeneration of sweetpotato (Ipomoea batatas L.) from leaf explants in vitro using a two-stage protocol. Scientia Horticulturae, 1995, 62, 217-224.	3.6	14

#	Article	IF	CITATIONS
19	From rags to riches: insights from the first genomic sequence of a plant pathogenic bacterium. Genome Biology, 2000, 1, reviews1019.1.	9.6	10
20	Development of PCR-Based Detection System for Soft Rot Pectobacteriaceae Pathogens Using Molecular Signatures. Microorganisms, 2020, 8, 358.	3.6	10
21	Modified inoculation and disease assessment methods reveal host specificity in Erwinia tracheiphila-Cucurbitaceae interactions. Microbial Pathogenesis, 2015, 89, 184-187.	2.9	5
22	A miniâ€In5â€derived transposon with reportable and selectable markers enables rapid generation and screening of insertional mutants in Gramâ€negative bacteria. Letters in Applied Microbiology, 2021, 72, 283-291.	2.2	5
23	Characterization of the incompatible interaction between Erwinia tracheiphila and non-host tobacco (Nicotiana tabacum). Physiological and Molecular Plant Pathology, 2016, 96, 85-93.	2.5	2
24	Genotypic analysis of Xylella fastidiosa isolates from different hosts using sequences homologous to the Xanthomonas rpf genes. Molecular Plant Pathology, 2003, 4, 327-335.	4.2	1
25	Identification of Bacterial Wilt (Erwinia tracheiphila) Resistances in USDA Melon Collection. Plants, 2021, 10, 1972.	3.5	1
26	CorA, the magnesium/nickel/cobalt transporter, affects virulence and extracellular enzyme production in the soft rot pathogen <i>Pectobacterium carotovorum</i> . Molecular Plant Pathology, 2012, 13, 327-327.	4.2	0
27	Transposon insertion upstream of a putative sodium/sulphate symporter is associated with hypervirulence in the soft rot bacterium, <i>Pectobacterium carotovorum</i> . Journal of Phytopathology, 2018, 166, 365-371.	1.0	0
28	Abstract C60: Exposure of low doses of quercetin on DNA oxidation inPectobacterium carotovorumKD 100 and Agrobacterium tumefaciens GV 3103, 2013,,.		0