
Lorena Rodriguez-Rubio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6150358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endolysins as Antimicrobials. Advances in Virus Research, 2012, 83, 299-365.	2.1	291
2	Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends in Food Science and Technology, 2010, 21, 373-382.	15.1	183
3	Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry. Frontiers in Microbiology, 2016, 7, 825.	3.5	178
4	Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. International Journal of Food Microbiology, 2010, 141, 151-155.	4.7	142
5	Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Critical Reviews in Microbiology, 2013, 39, 427-434.	6.1	126
6	From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochemical Society Transactions, 2016, 44, 123-128.	3.4	89
7	Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environment International, 2018, 115, 133-141.	10.0	84
8	Role of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-philPLA7 as an Anti-biofilm Agent in Staphylococcal Species. Frontiers in Microbiology, 2015, 6, 1315.	3.5	81
9	Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Critical Reviews in Biotechnology, 2016, 36, 1-11.	9.0	75
10	Enhanced Staphylolytic Activity of the Staphylococcus aureus Bacteriophage vB_SauS-philPLA88 HydH5 Virion-Associated Peptidoglycan Hydrolase: Fusions, Deletions, and Synergy with LysH5. Applied and Environmental Microbiology, 2012, 78, 2241-2248.	3.1	72
11	Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Scientific Reports, 2019, 9, 13281.	3.3	67
12	Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureusbacteriophage vB_SauS-phiIPLA88. BMC Microbiology, 2011, 11, 138.	3.3	63
13	Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control, 2017, 73, 1474-1482.	5.5	57
14	â€~Artilysation' of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Scientific Reports, 2016, 6, 35382.	3.3	52
15	The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage vB_SauS-philPLA88 Display Multiple Active Catalytic Domains and Do Not Trigger Staphylococcal Resistance. PLoS ONE, 2013, 8, e64671.	2.5	51
16	DUF3380 Domain from a Salmonella Phage Endolysin Shows Potent <i>N</i> -Acetylmuramidase Activity. Applied and Environmental Microbiology, 2016, 82, 4975-4981.	3.1	49
17	Potential of the Virion-Associated Peptidoglycan Hydrolase HydH5 and Its Derivative Fusion Proteins in Milk Biopreservation. PLoS ONE, 2013, 8, e54828.	2.5	47
18	Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens, 2021, 10, 404.	2.8	44

#	Article	IF	CITATIONS
19	Antibiotic Resistance Genes in Phage Particles from Antarctic and Mediterranean Seawater Ecosystems. Microorganisms, 2020, 8, 1293.	3.6	33
20	Listeriaphages and coagulin C23 act synergistically to kill Listeria monocytogenes in milk under refrigeration conditions. International Journal of Food Microbiology, 2015, 205, 68-72.	4.7	31
21	Extensive antimicrobial resistance mobilization via multicopy plasmid encapsidation mediated by temperate phages. Journal of Antimicrobial Chemotherapy, 2020, 75, 3173-3180.	3.0	25
22	The Tape Measure Protein of the Staphylococcus aureus Bacteriophage vB_SauS-philPLA35 Has an Active Muramidase Domain. Applied and Environmental Microbiology, 2012, 78, 6369-6371.	3.1	24
23	Faecal phageome of healthy individuals: presence of antibiotic resistance genes and variations caused by ciprofloxacin treatment. Journal of Antimicrobial Chemotherapy, 2019, 74, 854-864.	3.0	24
24	Unravelling the consequences of the bacteriophages in human samples. Scientific Reports, 2020, 10, 6737.	3.3	24
25	Bacteriophages as Fecal Pollution Indicators. Viruses, 2021, 13, 1089.	3.3	21
26	Lytic Activity of LysH5 Endolysin Secreted by Lactococcus lactis Using the Secretion Signal Sequence of Bacteriocin Lcn972. Applied and Environmental Microbiology, 2012, 78, 3469-3472.	3.1	20
27	The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ï•11 Plays a Structural Role in the Viral Particle. Applied and Environmental Microbiology, 2013, 79, 6187-6190.	3.1	20
28	Bacteriophages in sewage: abundance, roles, and applications. FEMS Microbes, 2022, 3, .	2.1	15
29	Is Genetic Mobilization Considered When Using Bacteriophages in Antimicrobial Therapy?. Antibiotics, 2017, 6, 32.	3.7	12
30	Bacteriophages immunomodulate the response of monocytes. Experimental Biology and Medicine, 2021, 246, 1263-1268.	2.4	10
31	Design and Selection of Engineered Lytic Proteins With Staphylococcus aureus Decolonizing Activity. Frontiers in Microbiology, 2021, 12, 723834.	3.5	10
32	Phage sensitivity and prophage carriage in Staphylococcus aureus isolated from foods in Spain and New Zealand. International Journal of Food Microbiology, 2016, 230, 16-20.	4.7	7
33	Antibiotic resistance in the viral fraction of dairy products and a nut-based milk. International Journal of Food Microbiology, 2022, 367, 109590.	4.7	7
34	Editorial: Antimicrobial Resistance in Aquatic Environments. Frontiers in Microbiology, 2022, 13, 866268.	3.5	6
35	Chicken liver is a potential reservoir of bacteriophages and phageâ€derived particles containing antibiotic resistance genes. Microbial Biotechnology, 2022, 15, 2464-2475.	4.2	4

Are Phages Parasites or Symbionts of Bacteria?. , 2020, , 143-162.

#	Article	IF	CITATIONS
37	Isolation and Characterization of Shiga Toxin Bacteriophages. Methods in Molecular Biology, 2021, 2291, 119-144.	0.9	2
38	Prevalence of bacterial genes in the phage fraction of food viromes. Food Research International, 2022, 156, 111342.	6.2	2
39	Peptidoglycan Hydrolytic Activity of Bacteriophage Lytic Proteins in Zymogram Analysis. Methods in Molecular Biology, 2019, 1898, 107-115.	0.9	1