Lixin Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6150075/publications.pdf

Version: 2024-02-01

186265 289244 2,813 40 28 40 citations h-index g-index papers 40 40 40 3287 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatiotemporal Patterns of Water Stable Isotope Compositions at the Shale Hills Critical Zone Observatory: Linkages to Subsurface Hydrologic Processes. Vadose Zone Journal, 2013, 12, 1-16.	2.2	359
2	Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory. Geochimica Et Cosmochimica Acta, 2010, 74, 3669-3691.	3.9	216
3	Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 2017, 165, 280-301.	9.1	207
4	Probing deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA): the hypothesis of nested chemical reaction fronts in the subsurface. Earth Surface Processes and Landforms, 2013, 38, 1280-1298.	2.5	131
5	Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory. Earth and Planetary Science Letters, 2010, 297, 211-225.	4.4	125
6	Evidence for carbon sequestration by agricultural liming. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	115
7	Hot Spots and Hot Moments of Dissolved Organic Carbon Export and Soil Organic Carbon Storage in the Shale Hills Catchment. Vadose Zone Journal, 2011, 10, 943-954.	2.2	101
8	Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering. Chemical Geology, 2013, 356, 50-63.	3.3	98
9	Characterization of deep weathering and nanoporosity development in shaleA neutron study. American Mineralogist, 2011, 96, 498-512.	1.9	97
10	How mineralogy and slope aspect affect REE release and fractionation during shale weathering in the Susquehanna/Shale Hills Critical Zone Observatory. Chemical Geology, 2011, 290, 31-49.	3.3	93
11	Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA). Chemical Geology, 2012, 304-305, 175-184.	3.3	90
12	Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): A stable isotope perspective. Science of the Total Environment, 2019, 646, 1588-1600.	8.0	84
13	Opening the "Black Box― Water Chemistry Reveals Hydrological Controls on Weathering in the Susquehanna Shale Hills Critical Zone Observatory. Vadose Zone Journal, 2011, 10, 928-942.	2.2	79
14	Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation. Chemical Geology, 2015, 397, 37-50.	3.3	77
15	Porosity and surface area evolution during weathering of two igneous rocks. Geochimica Et Cosmochimica Acta, 2013, 109, 400-413.	3.9	76
16	Fe cycling in the Shale Hills Critical Zone Observatory, Pennsylvania: An analysis of biogeochemical weathering and Fe isotope fractionation. Geochimica Et Cosmochimica Acta, 2012, 99, 18-38.	3.9	75
17	Regolith production and transport in the Susquehanna Shale Hills Critical Zone Observatory, Part 1: Insights from Uâ€series isotopes. Journal of Geophysical Research F: Earth Surface, 2013, 118, 722-740.	2.8	70
18	Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochimica Et Cosmochimica Acta, 2020, 269, 63-100.	3.9	68

#	Article	IF	Citations
19	Soils Reveal Widespread Manganese Enrichment from Industrial Inputs. Environmental Science & Emp; Technology, 2011, 45, 241-247.	10.0	67
20	How Oxidation and Dissolution in Diabase and Granite Control Porosity during Weathering. Soil Science Society of America Journal, 2015, 79, 55-73.	2.2	59
21	The CO 2 consumption potential during gray shale weathering: Insights from the evolution of carbon isotopes in the Susquehanna Shale Hills critical zone observatory. Geochimica Et Cosmochimica Acta, 2014, 142, 260-280.	3.9	55
22	Inorganic carbon isotope systematics in soil profiles undergoing silicate and carbonate weathering (Southern Michigan, USA). Chemical Geology, 2009, 264, 139-153.	3.3	40
23	REE mobility and fractionation during shale weathering along a climate gradient. Chemical Geology, 2017, 466, 352-379.	3.3	40
24	Topographic controls on the depth distribution of soil CO2 in a small temperate watershed. Applied Geochemistry, 2015, 63, 58-69.	3.0	39
25	A reactive transport model for Marcellus shale weathering. Geochimica Et Cosmochimica Acta, 2017, 217, 421-440.	3.9	38
26	CZ-tope at Susquehanna Shale Hills CZO: Synthesizing multiple isotope proxies to elucidate Critical Zone processes across timescales in a temperate forested landscape. Chemical Geology, 2016, 445, 103-119.	3.3	37
27	The carbonate system geochemistry of shallow groundwater-surface water systems in temperate glaciated watersheds (Michigan, USA): Significance of open-system dolomite weathering. Bulletin of the Geological Society of America, 2007, 119, 515-528.	3.3	36
28	Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry. Geochimica Et Cosmochimica Acta, 2008, 72, 1027-1042.	3.9	33
29	Soil quality changes due to flood irrigation in agricultural fields along the Rio Grande in western Texas. Applied Geochemistry, 2018, 90, 87-100.	3.0	29
30	Quantifying an early signature of the industrial revolution from lead concentrations and isotopes in soils of Pennsylvania, USA. Anthropocene, 2014, 7, 16-29.	3.3	26
31	Soil chemistry and shale weathering on a hillslope influenced by convergent hydrologic flow regime at the Susquehanna/Shale Hills Critical Zone Observatory. Applied Geochemistry, 2011, 26, S51-S56.	3.0	25
32	Importance of vegetation for manganese cycling in temperate forested watersheds. Global Biogeochemical Cycles, 2015, 29, 160-174.	4.9	24
33	Chemical and hydrological controls on salt accumulation in irrigated soils of southwestern U.S. Geoderma, 2021, 391, 114976.	5.1	22
34	Exploring the Effect of Aspect to Inform Future Earthcasts of Climateâ€Driven Changes in Weathering of Shale. Journal of Geophysical Research F: Earth Surface, 2019, 124, 974-993.	2.8	20
35	Insight into factors controlling formation rates of pedogenic carbonates: A combined geochemical and isotopic approach in dryland soils of the US Southwest. Chemical Geology, 2019, 527, 118503.	3.3	18
36	Experiential learning and close mentoring improve recruitment and retention in the undergraduate environmental science program at an Hispanic-serving institution. Journal of Geoscience Education, 2019, 67, 384-399.	1.4	15

#	Article	lF	CITATION
37	Inorganic and organic carbon dynamics in forested soils developed on contrasting geology in Slovenia—a stable isotope approach. Journal of Soils and Sediments, 2016, 16, 382-395.	3.0	12
38	Dryland irrigation increases accumulation rates of pedogenic carbonate and releases soil abiotic CO2. Scientific Reports, 2022, 12, 464.	3.3	11
39	Using Geophysics to Investigate Texture and Salinity of Agricultural Soils and Their Impact on Crop Growth in El Paso County, Texas. Journal of Environmental and Engineering Geophysics, 2019, 24, 465-477.	0.5	3
40	The future low-temperature geochemical data-scape as envisioned by the U.S. geochemical community. Computers and Geosciences, 2021, 157, 104933.	4.2	3