Joao Trovao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6149958/publications.pdf

Version: 2024-02-01

567281 713466 24 472 15 21 citations h-index g-index papers 24 24 24 399 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. Journal of Cultural Heritage, 2019, 36, 275-285.	3.3	70
2	Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. International Biodeterioration and Biodegradation, 2019, 142, 91-102.	3.9	51
3	Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. International Biodeterioration and Biodegradation, 2013, 84, 250-257.	3.9	40
4	Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: Are current norms and reference values adequate?. Journal of Cultural Heritage, 2018, 34, 268-276.	3.3	32
5	Valuing native ectomycorrhizal fungi as a Mediterranean forestry component for sustainable and innovative solutions. Botany, 2014, 92, 161-171.	1.0	30
6	Analysis of fungal deterioration phenomena in the first Portuguese King tomb using a multi-analytical approach. International Biodeterioration and Biodegradation, 2020, 149, 104933.	3.9	28
7	Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. International Biodeterioration and Biodegradation, 2013, 79, 49-55.	3.9	27
8	Structural diversity of photoautotrophic populations within the UNESCO site $\hat{a} \in \mathbb{C}$ Old Cathedral of Coimbra $\hat{a} \in \mathbb{C}$ (Portugal), using a combined approach. International Biodeterioration and Biodegradation, 2019, 140, 9-20.	3.9	25
9	Combining an innovative non-invasive sampling method and high-throughput sequencing to characterize fungal communities on a canvas painting. International Biodeterioration and Biodegradation, 2019, 145, 104816.	3.9	20
10	Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of Coimbra. Microorganisms, 2021, 9, 709.	3.6	20
11	Description of Aeminiaceae fam. nov., Aeminium gen. nov. and Aeminium ludgeri sp. nov. (Capnodiales), isolated from a biodeteriorated art-piece in the Old Cathedral of Coimbra, Portugal. MycoKeys, 2019, 45, 57-73.	1.9	20
12	Diversity of fungal species in ancient parchments collections of the Archive of the University of Coimbra. International Biodeterioration and Biodegradation, 2016, 108, 57-66.	3.9	19
13	<i>Parakomarekiella sesnandensis</i> gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). European Journal of Phycology, 2021, 56, 301-315.	2.0	19
14	Current Knowledge on the Fungal Degradation Abilities Profiled through Biodeteriorative Plate Essays. Applied Sciences (Switzerland), 2021, 11, 4196.	2.5	17
15	In vitro analyses of fungi and dolomitic limestone interactions: Bioreceptivity and biodeterioration assessment. International Biodeterioration and Biodegradation, 2020, 155, 105107.	3.9	16
16	Description of Myxacorys almedinensis sp. nov. (Synechococcales,) Tj ETQq(0 0 0 rgBT 0.3	/Overlock 10 13
17	A contribution to understand the Portuguese emblematic An \tilde{A} § \tilde{A} £ limestone bioreceptivity to fungal colonization and biodeterioration. Journal of Cultural Heritage, 2021, 49, 305-312.	3.3	9
18	High-Quality Draft Genome Sequence of the Microcolonial Black Fungus Aeminium ludgeri DSM 106916. Microbiology Resource Announcements, 2019, 8, .	0.6	6

#	Article	IF	CITATIONS
19	Phototrophic and fungal communities inhabiting the Roman cryptoporticus of the national museum Machado de Castro (UNESCO site, Coimbra, Portugal). World Journal of Microbiology and Biotechnology, 2022, 38, .	3.6	6
20	Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis. Applied Sciences (Switzerland), 2021, 11, 10589.	2.5	2
21	High-Quality Draft Genome Sequences of Three Cyanobacteria Isolated from the Limestone Walls of the Old Cathedral of Coimbra, Portugal. Microbiology Resource Announcements, 2020, 9, .	0.6	1
22	Talaromyces saxoxalicus sp. nov., isolated from the limestone walls of the Old Cathedral of Coimbra, Portugal. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	1
23	Air and wall mycobiota interactions—A case study in the Old Cathedral of Coimbra. , 2022, , 101-125.		O
24	Introducing Petrachlorosaceae fam. nov., Petrachloros gen. nov. and Petrachloros mirabilis sp. nov. (Synechococcales, Cyanobacteria) isolated from a Portuguese UNESCO monument. Journal of Phycology, 2022, , .	2.3	0