Pekka Kohonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6149835/publications.pdf Version: 2024-02-01

PERKA KOHONEN

#	Article	IF	CITATIONS
1	A Comprehensive Panel of Three-Dimensional Models for Studies of Prostate Cancer Growth, Invasion and Drug Responses. PLoS ONE, 2010, 5, e10431.	2.5	299
2	Systematic Analysis of MicroRNAs Targeting the Androgen Receptor in Prostate Cancer Cells. Cancer Research, 2011, 71, 1956-1967.	0.9	244
3	Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Research and Treatment, 2011, 125, 421-430.	2.5	222
4	Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene, 2009, 28, 3926-3936.	5.9	205
5	High-Throughput Cell-Based Screening of 4910 Known Drugs and Drug-like Small Molecules Identifies Disulfiram as an Inhibitor of Prostate Cancer Cell Growth. Clinical Cancer Research, 2009, 15, 6070-6078.	7.0	185
6	Loss of Pax5 Promotes Plasma Cell Differentiation. Immunity, 2006, 24, 283-293.	14.3	182
7	Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Medicine, 2010, 2, 65.	8.2	145
8	Androgen regulation of microâ€RNAs in prostate cancer. Prostate, 2011, 71, 604-614.	2.3	144
9	Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene, 2012, 31, 3444-3456.	5.9	112
10	ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression. Molecular Cell, 2012, 45, 764-776.	9.7	112
11	Arachidonic Acid Pathway Members PLA2G7, HPGD, EPHX2, and CYP4F8 Identified as Putative Novel Therapeutic Targets in Prostate Cancer. American Journal of Pathology, 2011, 178, 525-536.	3.8	102
12	A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury. Nature Communications, 2017, 8, 15932.	12.8	99
13	The eNanoMapper database for nanomaterial safety information. Beilstein Journal of Nanotechnology, 2015, 6, 1609-1634.	2.8	92
14	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 2020, 18, 583-602.	4.1	74
15	Next-Generation Sequencing Reveals Low-Dose Effects of Cationic Dendrimers in Primary Human Bronchial Epithelial Cells. ACS Nano, 2015, 9, 146-163.	14.6	73
16	CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation. Journal of Cell Biology, 2014, 204, 713-727.	5.2	64
17	Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Scientific Reports, 2018, 8, 1115.	3.3	62
18	Towards FAIR nanosafety data. Nature Nanotechnology, 2021, 16, 644-654.	31.5	61

Ρεκκά Κομόνεν

#	Article	IF	CITATIONS
19	Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages. PLoS ONE, 2015, 10, e0129008.	2.5	61
20	Identification of miR-193b Targets in Breast Cancer Cells and Systems Biological Analysis of Their Functional Impact. Molecular and Cellular Proteomics, 2011, 10, M110.005322.	3.8	60
21	High-Throughput Transcriptomic and RNAi Analysis Identifies AIM1, ERGIC1, TMED3 and TPX2 as Potential Drug Targets in Prostate Cancer. PLoS ONE, 2012, 7, e39801.	2.5	54
22	Systematic Identification of MicroRNAs That Impact on Proliferation of Prostate Cancer Cells and Display Changed Expression in Tumor Tissue. European Urology, 2016, 69, 1120-1128.	1.9	53
23	A Data Fusion Pipeline for Generating and Enriching Adverse Outcome Pathway Descriptions. Toxicological Sciences, 2018, 162, 264-275.	3.1	51
24	Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models. Oncogene, 2012, 31, 2075-2089.	5.9	44
25	Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. Small, 2020, 16, e1904749.	10.0	43
26	Functional Profiling of Precursor MicroRNAs Identifies MicroRNAs Essential for Glioma Proliferation. PLoS ONE, 2013, 8, e60930.	2.5	43
27	Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. Nanomaterials, 2020, 10, 750.	4.1	42
28	Chicken B-Cell-Activating Factor: Regulator of B-Cell Survival in the Bursa of Fabricius. Scandinavian Journal of Immunology, 2004, 59, 449-457.	2.7	39
29	Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment. Nanomaterials, 2020, 10, 708.	4.1	38
30	Insight into lymphoid development by gene expression profiling of avian B�cells. Immunogenetics, 2003, 55, 412-422.	2.4	36
31	The ToxBank Data Warehouse: Supporting the Replacement of In Vivo Repeated Dose Systemic Toxicity Testing. Molecular Informatics, 2013, 32, 47-63.	2.5	35
32	miR-183 in Prostate Cancer Cells Positively Regulates Synthesis and Serum Levels of Prostate-specific Antigen. European Urology, 2015, 68, 581-588.	1.9	35
33	Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis. Oncogene, 2014, 33, 3538-3549.	5.9	34
34	HES6 gene is selectively overexpressed in glioma and represents an important transcriptional regulator of glioma proliferation. Oncogene, 2012, 31, 1299-1310.	5.9	33
35	Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase. BMC Cancer, 2010, 10, 7.	2.6	32
36	Transcriptomics in Toxicogenomics, Part II: Preprocessing and Differential Expression Analysis for High Quality Data. Nanomaterials, 2020, 10, 903.	4.1	31

Ρεκκά Κομόνεν

#	Article	IF	CITATIONS
37	Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castrationâ€resistant prostate cancer. Prostate, 2012, 72, 789-802.	2.3	30
38	Concerted action of Helios and Ikaros controls the expression of the inositol 5â€phosphatase SHIP. European Journal of Immunology, 2010, 40, 2599-2607.	2.9	29
39	Toward the Replacement of Animal Experiments through the Bioinformatics-driven Analysis of â€~Omics' Data from Human Cell Cultures. ATLA Alternatives To Laboratory Animals, 2015, 43, 325-332.	1.0	29
40	GTI: A Novel Algorithm for Identifying Outlier Gene Expression Profiles from Integrated Microarray Datasets. PLoS ONE, 2011, 6, e17259.	2.5	29
41	Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies?. Nanomaterials, 2020, 10, 2493.	4.1	28
42	Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death and Disease, 2014, 5, e1043-e1043.	6.3	25
43	Cancer Biology, Toxicology and Alternative Methods Development Go Handâ€inâ€Hand. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 50-58.	2.5	22
44	Identification of a novel cytokine-like transcript differentially expressed in avian ?d T cells. Immunogenetics, 2004, 55, 845-854.	2.4	20
45	toxFlow: A Web-Based Application for Read-Across Toxicity Prediction Using Omics and Physicochemical Data. Journal of Chemical Information and Modeling, 2018, 58, 543-549.	5.4	19
46	Toxic and Genomic Influences of Inhaled Nanomaterials as a Basis for Predicting Adverse Outcome. Annals of the American Thoracic Society, 2018, 15, S91-S97.	3.2	18
47	Integrated analysis of in vitro data and the adverse outcome pathway framework for prioritization and regulatory applications: An exploratory case study using publicly available data on piperonyl butoxide and liver models. Toxicology in Vitro, 2019, 54, 23-32.	2.4	11
48	Avian Helios and Evolution of the Ikaros Family. Scandinavian Journal of Immunology, 2004, 60, 100-107.	2.7	10
49	Androgen receptorâ€interacting protein <scp>HSPBAP1</scp> facilitates growth of prostate cancer cells in androgenâ€deficient conditions. International Journal of Cancer, 2015, 136, 2535-2545.	5.1	10
50	Enriching Nanomaterials Omics Data: An Integration Technique to Generate Biological Descriptors. Small Methods, 2017, 1, 1700139.	8.6	10
51	High-throughput cell-based compound screen identifies pinosylvin methyl ether and tanshinone IIA as inhibitors of castration-resistant prostate cancer. Journal of Molecular Biochemistry, 2016, 5, 12-22.	0.1	7
52	Development of Early PCLP1-Expressing Haematopoietic Cells within the Avian Dorsal Aorta. Scandinavian Journal of Immunology, 2005, 62, 218-223.	2.7	6
53	The first eNanoMapper prototype: A substance database to support safe-by-design. , 2014, , .		5
54	RDFIO: extending Semantic MediaWiki for interoperable biomedical data management. Journal of Biomedical Semantics, 2017, 8, 35.	1.6	5

Ρεκκά Κομόνεν

#	Article	IF	CITATIONS
55	Genotoxic and epigenetic effects of silver nanoparticles. Toxicology Letters, 2012, 211, S40.	0.8	4
56	Novel pyrimidine-2,4-diamine derivative suppresses the cell viability and spindle assembly checkpoint activity by targeting Aurora kinases. Carcinogenesis, 2013, 34, 436-445.	2.8	4
57	Reply to: Prospects and challenges for FAIR toxicogenomics data. Nature Nanotechnology, 2022, 17, 19-20.	31.5	4
58	Abstract 3977: Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. , 2011, , .		3
59	P26. MicroRNA expression profiling and functional screening in bone metastatic breast cancer cells. Cancer Treatment Reviews, 2008, 34, 22.	7.7	2
60	Matrix and Tensor Factorization Methods for Toxicogenomic Modeling and Prediction. Challenges and Advances in Computational Chemistry and Physics, 2019, , 57-74.	0.6	1
61	Abstract 1953: Functional identification of microRNA targets by integrated proteomics and microarray profiling: miR-193b in breast cancer. , 2010, , .		0
62	Abstract 2072: Systematic functional analysis of microRNAs by transfection of 1129 miRNAs into prostate cancer cells. , 2010, , .		0
63	Abstract 3800: HES6 gene is a strong glioma biomarker and a key transcriptional regulator needed for cancer cell growth. , 2011, , .		0
64	Abstract 4032: Transcriptomics analyses of normal and transformed keratinocyte lines generated novel biomarkers for prognosticating outcome in head and neck cancer , 2013, , .		0