Yong-Cai Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6149053/publications.pdf

Version: 2024-02-01

142	11,650	58 h-index	104
papers	citations		g-index
145	145	145	15763 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene. Nano Letters, 2014, 14, 4821-4827.	9.1	683
2	Nanofiber Air Filters with High-Temperature Stability for Efficient PM _{2.5} Removal from the Pollution Sources. Nano Letters, 2016, 16, 3642-3649.	9.1	456
3	All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 2013, 5, 3245.	5.6	401
4	Secondary Branching and Nitrogen Doping of ZnO Nanotetrapods: Building a Highly Active Network for Photoelectrochemical Water Splitting. Nano Letters, 2012, 12, 407-413.	9.1	390
5	Efficient solar-driven water splitting by nanocone BiVO ₄ -perovskite tandem cells. Science Advances, 2016, 2, e1501764.	10.3	351
6	Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures. Nano Letters, 2014, 14, 2123-2129.	9.1	307
7	High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Physical Chemistry Chemical Physics, 2011, 13, 12554.	2.8	273
8	Quinone Electrode Materials for Rechargeable Lithium/Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1700278.	19.5	268
9	Synthesis of Size-Tunable Anatase TiO ₂ Nanospindles and Their Assembly into Anatase@Titanium Oxynitride/Titanium Nitrideâ^'Graphene Nanocomposites for Rechargeable Lithium Ion Batteries with High Cycling Performance. ACS Nano, 2010, 4, 6515-6526.	14.6	262
10	Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Science Advances, 2017, 3, e1601978.	10.3	245
11	Fullyâ€Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials. Advanced Materials, 2017, 29, 1700775.	21.0	230
12	Allâ€Solidâ€State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. Advanced Energy Materials, 2019, 9, 1802753.	19.5	197
13	In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts. Nano Letters, 2016, 16, 7588-7596.	9.1	186
14	A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 4439.	6.7	185
15	Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts. Environmental Science & Environmental Scien	10.0	185
16	Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Letters, 2017, 17, 2496-2505.	9.1	184
17	Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. Journal of Materials Chemistry, 2011, 21, 6346.	6.7	165
18	Double‣ayered Photoanodes from Variable‧ize Anatase TiO ₂ Nanospindles: A Candidate for Highâ€Efficiency Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 3675-3679.	13.8	159

#	Article	IF	CITATIONS
19	Hierarchical Co ₃ O ₄ Nanoâ€Micro Arrays Featuring Superior Activity as Cathode in a Flexible and Rechargeable Zinc–Air Battery. Advanced Science, 2019, 6, 1802243.	11.2	148
20	A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 2168.	30.8	146
21	Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy, 2015, 12, 468-475.	16.0	142
22	In situ tetrazole ligand synthesis leading to a microporous cadmium–organic framework for selective ion sensing. Chemical Communications, 2009, , 5415.	4.1	139
23	Sulfiphilic Nickel Phosphosulfide Enabled Li ₂ S Impregnation in 3D Graphene Cages for Li–S Batteries. Advanced Materials, 2017, 29, 1603366.	21.0	139
24	Upcycling of Electroplating Sludge into Ultrafine Sn@C Nanorods with Highly Stable Lithium Storage Performance. Nano Letters, 2019, 19, 1860-1866.	9.1	139
25	High Electroactive Material Loading on a Carbon Nanotube@3D Graphene Aerogel for Highâ€Performance Flexible Allâ€Solidâ€State Asymmetric Supercapacitors. Advanced Functional Materials, 2017, 27, 1701122.	14.9	138
26	Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 1001-1006.	6.7	137
27	Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy, 2018, 46, 266-276.	16.0	135
28	Liquidâ€Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution. Advanced Materials, 2017, 29, 1606187.	21.0	128
29	Dithiafulvenyl Unit as a New Donor for High-Efficiency Dye-Sensitized Solar Cells: Synthesis and Demonstration of a Family of Metal-Free Organic Sensitizers. Organic Letters, 2012, 14, 2214-2217.	4.6	122
30	A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Research, 2012, 5, 726-738.	10.4	116
31	Mesoporous TiO ₂ Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Efficient Photocatalytic Performance Photocatalytic Performance Photocatalytic Performance Photocatalytic Photocatalytic Performance Photocatalytic	8.0	116
32	Engineering Cobalt Oxide with Coexisting Cobalt Defects and Oxygen Vacancies for Enhanced Catalytic Oxidation of Toluene. ACS Catalysis, 2022, 12, 4906-4917.	11.2	116
33	Vertically Aligned Carbon Nanotubes on Carbon Nanofibers: A Hierarchical Three-Dimensional Carbon Nanostructure for High-Energy Flexible Supercapacitors. Chemistry of Materials, 2015, 27, 1194-1200.	6.7	113
34	Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 6406-6410.	13.8	106
35	A Quasi-Quantum Well Sensitized Solar Cell with Accelerated Charge Separation and Collection. Journal of the American Chemical Society, 2013, 135, 9531-9539.	13.7	105
36	A three-dimensional hexagonal fluorine-doped tin oxide nanocone array: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 3651-3658.	30.8	103

#	Article	IF	Citations
37	Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy, 2016, 26, 610-619.	16.0	103
38	Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin, 2019, 64, 1348-1380.	9.0	101
39	Activating Metal Oxides Nanocatalysts for Electrocatalytic Water Oxidation by Quenching-Induced Near-Surface Metal Atom Functionality. Journal of the American Chemical Society, 2021, 143, 14169-14177.	13.7	101
40	Interfacial effects in hierarchically porous \hat{l}_{\pm} -MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Applied Catalysis B: Environmental, 2020, 268, 118418.	20.2	100
41	Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries. Electrochemistry Communications, 2010, 12, 1253-1256.	4.7	97
42	Highly Nitridated Graphene–Li ₂ S Cathodes with Stable Modulated Cycles. Advanced Energy Materials, 2015, 5, 1501369.	19.5	97
43	High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanodes of SnO ₂ Nanoparticles/ZnO Nanotetrapods. Journal of Physical Chemistry A, 2010, 114, 3127-3138.	2.5	94
44	Cadmium Metal-Directed Three-Dimensional Coordination Polymers: In Situ Tetrazole Ligand Synthesis, Structures, and Luminescent Properties. Crystal Growth and Design, 2010, 10, 1332-1340.	3.0	94
45	Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Research, 2012, 5, 826-832.	10.4	91
46	Reversible shrinkage and expansion of a blue photofluorescent cadmium coordination polymer and in situ tetrazole ligand synthesis. Chemical Communications, 2008, , 2239.	4.1	89
47	Hollow CuFe2O4 spheres encapsulated in carbon shells as an anode material for rechargeable lithium-ion batteries. Electrochimica Acta, 2011, 56, 9127-9132.	5.2	88
48	Ultrafast Allâ€Solidâ€State Coaxial Asymmetric Fiber Supercapacitors with a High Volumetric Energy Density. Advanced Energy Materials, 2018, 8, 1702946.	19.5	86
49	Morphologyâ€Conserved Transformations of Metalâ€Based Precursors to Hierarchically Porous Microâ€/Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1607015.	21.0	79
50	High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Materials, 2020, 26, 73-82.	18.0	79
51	3D Ln–Ag (Ln=Nd; Eu) coordination polymers based on N- and O-donor ligands: Synthesis, crystal structures and luminescence. Inorganic Chemistry Communication, 2007, 10, 1399-1403.	3.9	69
52	Spontaneous Assembly of dâ^f Coordination Frameworks: Syntheses, Structures, and Photoluminescence. Crystal Growth and Design, 2010, 10, 114-121.	3.0	68
53	Stretchable fiber-shaped lithium metal anode. Energy Storage Materials, 2019, 22, 179-184.	18.0	65
54	Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries. Nano Research, 2014, 7, 1355-1363.	10.4	63

#	Article	IF	CITATIONS
55	Syntheses, Crystal Structures, and Gas Storage Studies in New Three-Dimensional 5-Aminoisophthalate Praseodymium Polymeric Complexes. Inorganic Chemistry, 2009, 48, 3976-3981.	4.0	62
56	General surfactant-free synthesis of MTiO3 ($M = Ba$, Sr, Pb) perovskite nanostrips. Journal of Materials Chemistry, 2009, 19, 976.	6.7	61
57	Rationally designed and controlled syntheses of different series of 4d–4f heterometallic coordination frameworks based on lanthanide carboxylate and Ag(IN)2 substructures. CrystEngComm, 2010, 12, 277-290.	2.6	61
58	Reversible Anion Exchange and Sensing in Large Porous Materials Built from 4,4′-Bipyridine via π···π and H-Bonding Interactions. Inorganic Chemistry, 2008, 47, 5122-5128.	4.0	59
59	All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnO _{<i>x</i>} Nanospike and Graphene Electrodes. ACS Applied Materials & mp; Interfaces, 2015, 7, 22172-22180.	8.0	59
60	Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chemical Communications, 2010, 46, 8359.	4.1	57
61	Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale, 2014, 6, 3626-3631.	5.6	57
62	Airâ€Stable and Dendriteâ€Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C ₆₀ and Mg. Advanced Energy Materials, 2020, 10, 1903292.	19.5	57
63	Branched ZnO nanostructures as building blocks of photoelectrodes for efficient solar energy conversion. Physical Chemistry Chemical Physics, 2012, 14, 10872.	2.8	55
64	A high energy density Li ₂ S@C nanocomposite cathode with a nitrogen-doped carbon nanotube top current collector. Journal of Materials Chemistry A, 2015, 3, 18913-18919.	10.3	55
65	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. Journal of Materials Chemistry A, 2017, 5, 19091-19097.	10.3	55
66	Hierarchical Hollow Spheres of ZnO and Zn1â^'xCoxO: Directed Assembly and Room-Temperature Ferromagnetism. Crystal Growth and Design, 2010, 10, 177-183.	3.0	54
67	A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12, 9494.	2.8	54
68	Morphology and property investigation of primary particulate matter particles from different sources. Nano Research, 2018, 11, 3182-3192.	10.4	54
69	Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries. Electrochimica Acta, 2014, 146, 447-454.	5.2	51
70	All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Materials, 2019, 23, 375-382.	18.0	47
71	Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage. Science Bulletin, 2020, 65, 452-459.	9.0	46
72	Reciprocal regulation between support defects and strong metal-support interactions for highly efficient reverse water gas shift reaction over Pt/TiO2 nanosheets catalysts. Applied Catalysis B: Environmental, 2021, 298, 120507.	20.2	45

#	Article	IF	Citations
73	In situ solvothermal syntheses of a heteronuclear copper(I)-alkaline metallic tetrazole-based coordination polymer. CrystEngComm, 2010, 12, 270-276.	2.6	44
74	Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. Nanoscale, 2018, 10, 16562-16567.	5.6	44
75	Synthesis of New Copper Cyanide complexes via the Transformation of Organonitrile to Inorganic Cyanide. Inorganic Chemistry, 2008, 47, 5866-5872.	4.0	43
76	Synthesis of three-dimensional hyperbranched TiO ₂ nanowire arrays with significantly enhanced photoelectrochemical hydrogen production. Journal of Materials Chemistry A, 2015, 3, 4004-4009.	10.3	43
77	Fabrication of mesoporous Li ₂ S–C nanofibers for high performance Li/Li ₂ S cell cathodes. Nanoscale, 2015, 7, 9472-9476.	5.6	43
78	Synthesis of V ₂ O ₅ hierarchical structures for long cycle-life lithium-ion storage. Journal of Materials Chemistry A, 2015, 3, 1103-1109.	10.3	43
79	Aluminum nanopyramid array with tunable ultraviolet–visible–infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199. Biosensors and Bioelectronics, 2016, 79, 500-507.	10.1	42
80	Synthesis, characterization and 1D helical chain crystal structure of [Cu(DBA)2(1,10-phen)]n and [Cd(DBA)2(1,10-phen)2] (DBA=benzilic acid). Inorganica Chimica Acta, 2007, 360, 1819-1824.	2.4	41
81	Constructing three-dimensional porous Ni/Ni ₃ S ₂ nano-interfaces for hydrogen evolution electrocatalysis under alkaline conditions. Dalton Transactions, 2017, 46, 10700-10706.	3.3	41
82	Stable Liâ€Metal Deposition via a 3D Nanodiamond Matrix with Ultrahigh Young's Modulus. Small Methods, 2019, 3, 1900325.	8.6	40
83	Four three-dimensional lanthanide coordination polymer constructed from benzene-1,4-dioxydiacetic acid. Inorganica Chimica Acta, 2007, 360, 3265-3271.	2.4	38
84	Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angewandte Chemie, 2016, 128, 6516-6520.	2.0	38
85	Improved Li-storage performance with PEDOT-decorated MnO ₂ nanoboxes. Nanoscale, 2017, 9, 18467-18473.	5.6	37
86	Synthesis, structures and luminescent properties of 4d–4f heterometallic coordination frameworks based on lanthanide oxalate substructures with nicotinate bridging ligands. Polyhedron, 2008, 27, 3493-3499.	2.2	36
87	Construction and photoluminescence properties of two novel zinc(II) and cadmium(II) benzyl-tetrazole coordination polymers. Inorganic Chemistry Communication, 2009, 12, 1200-1203.	3.9	36
88	Surfactant directed self-assembly of size-tunable mesoporous titanium dioxide microspheres and their application in quasi-solid state dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 10806-10816.	7.8	36
89	Effect of Absorbed Sulfate Poisoning on the Performance of Catalytic Oxidation of VOCs over MnO ₂ . ACS Applied Materials & Supplied Materials & Su	8.0	36
90	Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells. Journal of Power Sources, 2017, 343, 39-46.	7.8	35

#	Article	IF	Citations
91	Engineering Co3+-rich crystal planes on Co3O4 hexagonal nanosheets for CO and hydrocarbons oxidation with enhanced catalytic activity and water resistance. Chemical Engineering Journal, 2021, 420, 130448.	12.7	34
92	Construction of an unusual three-dimensional transition metal lanthanide Ln/Cu(Br/Cl) coordination polymer with isonicotinate as the single ligand. Inorganic Chemistry Communication, 2008, 11, 978-981.	3.9	32
93	Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density. ACS Applied Materials & Energy Interfaces, 2019, 11, 5938-5946.	8.0	31
94	Cu ²⁺ -Decorated Porous Co ₃ O ₄ Nanosheets for Photothermocatalytic Oxidation of Toluene. ACS Applied Nano Materials, 2020, 3, 10454-10461.	5.0	31
95	Isostructural 3D Ln–Ag (Ln=Eu; Dy; Ho) coordination frameworks based on mixed nicotinate and oxalate ligands: Synthesis, crystal structures and luminescence. Inorganic Chemistry Communication, 2009, 12, 204-207.	3.9	30
96	Construction of isostructural Ln–Ag (Ln=Eu; Tb; Dy) nano-channel heterometallic coordination frameworks based on pyrazine-2-carboxylate and oxalate ligands. Inorganic Chemistry Communication, 2008, 11, 1151-1154.	3.9	29
97	Synthesis, crystal structures and properties of Ln(iii)–Cu(i)–Na(i) and Ln(iii)–Ag(i) heterometallic coordination polymers. CrystEngComm, 2011, 13, 3910.	2.6	29
98	Long Cycle Life and Highâ€Rate Sodium Metal Batteries Enabled by Regulating 3D Frameworks with Artificial Solidâ€State Interphases. Advanced Energy Materials, 2022, 12, .	19.5	29
99	Self-assembly of d–f coordination frameworks based on 1H-benzimidazole-5-carboxylic acid: synthesis, structure and luminescence. CrystEngComm, 2011, 13, 3852.	2.6	27
100	Construction of three-dimensional Ln–Ag (Ln=Eu; Tm) coordination polymers based on isonicotinate and oxalate ligands. Inorganic Chemistry Communication, 2008, 11, 1347-1351.	3.9	26
101	In Situ Tetrazole Ligand Synthesis of Twoâ€Fold Interpenetrating Zinc Coordination Frameworks. European Journal of Inorganic Chemistry, 2011, 2011, 3446-3453.	2.0	26
102	Synergistic promotion of photoelectrochemical water splitting efficiency of TiO 2 nanorods using metal-semiconducting nanoparticles. Applied Surface Science, 2017, 420, 631-637.	6.1	25
103	A cross-like hierarchical porous lithium-rich layered oxide with (110)-oriented crystal planes as a high energy density cathode for lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 13120-13129.	10.3	24
104	Self-driven hematite-based photoelectrochemical water splitting cells with three-dimensional nanobowl heterojunction and high-photovoltage perovskite solar cells. Materials Today Energy, 2017, 6, 128-135.	4.7	23
105	Construction of three isostructural 3d–4f microporous coordination frameworks based on mixed nicotinate and oxalate ligands. Inorganic Chemistry Communication, 2008, 11, 1409-1411.	3.9	22
106	Construction of two mercury(II) coordination frameworks involving in situ tetrazole ligand synthesis. Inorganic Chemistry Communication, 2010, 13, 749-752.	3.9	22
107	Magnetic-field-assisted aerosol pyrolysis synthesis of iron pyrite sponge-like nanochain networks as cost-efficient counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5508-5515.	10.3	22
108	A highly integrated All-manganese battery with oxide nanoparticles supported on the cathode and anode by super-aligned carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 4494-4504.	10.3	21

#	Article	IF	CITATIONS
109	A Hydrothermally Stable Single-Atom Catalyst of Pt Supported on High-Entropy Oxide/Al ₂ O ₃ : Structural Optimization and Enhanced Catalytic Activity. ACS Applied Materials & Date: A	8.0	21
110	Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control. Journal of Materials Science, 2017, 52, 2442-2451.	3.7	20
111	Boosting the electrochemical performance of hematite nanorods <i>via</i> quenching-induced metal single atom functionalization. Journal of Materials Chemistry A, 2021, 9, 3492-3499.	10.3	20
112	Acid-activated layered Î-MnO2 promotes VOCs combustion. Applied Surface Science, 2022, 574, 151707.	6.1	20
113	Ultrafine hollow Fe3O4 anode material modified with reduced graphene oxides for high-power lithium-ion batteries. Journal of Alloys and Compounds, 2022, 894, 162384.	5.5	19
114	Supramolecular isomers of lanthanides(III): Synthesis, crystal structures and luminescent properties. Inorganica Chimica Acta, 2009, 362, 1797-1804.	2.4	17
115	Functionalized N-doped hollow carbon spheres as sulfur host with enhanced electrochemical performances of lithium-sulfur batteries. Ionics, 2019, 25, 503-511.	2.4	17
116	Cu-MOF derived Cu–C nanocomposites towards high performance electrochemical supercapacitors. RSC Advances, 2020, 10, 4621-4629.	3.6	17
117	A dual plasmonic coreâ€"shell Pt/[TiN@TiO2] catalyst for enhanced photothermal synergistic catalytic activity of VOCs abatement. Nano Research, 2022, 15, 7071-7080.	10.4	17
118	Enhanced Charge Collection for Splitting of Water Enabled by an Engineered Three-Dimensional Nanospike Array. Journal of Physical Chemistry C, 2014, 118, 22465-22472.	3.1	16
119	Dendrite-free and air-stable lithium metal batteries enabled by electroless plating with aluminum fluoride. Journal of Materials Chemistry A, 2020, 8, 9218-9227.	10.3	16
120	Construction of bicontinuously porous Ni architecture as a deposition scaffold for high performance electrochemical supercapacitors. Nano Energy, 2014, 10, 329-336.	16.0	15
121	Controlling Electrochemical Lithiation/Delithiation Reaction Paths for Long-cycle Life Nanochain-structured FeS2 Electrodes. Electrochimica Acta, 2016, 211, 671-678.	5.2	15
122	Mn2O3@C yolk-shell nanocubes as lithium-storage anode with suppressed surface electrolyte decomposition. Materials Chemistry and Physics, 2019, 222, 256-262.	4.0	15
123	Highly Stabilized Silicon Nanoparticles for Lithium Storage <i>via</i> Hierarchical Carbon Architecture. ACS Applied Energy Materials, 2020, 3, 4777-4786.	5.1	15
124	Architecting robust interphase on high voltage cathodes via aromatic polyamide. Chemical Engineering Journal, 2021, 403, 126366.	12.7	15
125	Unveiling the water-resistant mechanism of Cu(I)-O-Co interfaces for catalytic oxidation. Chemical Engineering Journal, 2022, 429, 132219.	12.7	15
126	Puckered-boat conformation (H2O)14 cluster on the self-assembly of an inorganic-metal-architecture. Inorganic Chemistry Communication, 2007, 10, 705-708.	3.9	14

#	Article	IF	CITATIONS
127	Synthesis, Characterization and Thermal Behavior of Two 4dâ€4f Coordination Polymers Based on N and O Donor Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 393-398.	1.2	14
128	Nanobowl optical concentrator for efficient light trapping and high-performance organic photovoltaics. Science Bulletin, 2015, 60, 109-115.	9.0	13
129	Bulk Heterojunction Quasi-Two-Dimensional Perovskite Solar Cell with 1.18 V High Photovoltage. ACS Applied Materials & Diterfaces, 2019, 11, 2935-2943.	8.0	13
130	1D/2D hierarchical Co1-xFexO@N-doped carbon nanostructures for flexible zinc–air batteries. Electrochimica Acta, 2020, 363, 137264.	5.2	13
131	Quenching-induced surface modulation of perovskite oxides to boost catalytic oxidation activity. Journal of Hazardous Materials, 2022, 433, 128765.	12.4	12
132	Investigation of lithium content changes to understand the capacity fading mechanism in LiFePO4/graphite battery. Journal of Electroanalytical Chemistry, 2019, 853, 113544.	3.8	11
133	Conformal surface-nanocoating strategy to boost high-performance film cathodes for flexible zinc-ion batteries as an amphibious soft robot. Energy Storage Materials, 2022, 46, 472-481.	18.0	11
134	Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage. Journal of Electroanalytical Chemistry, 2019, 851, 113411.	3.8	8
135	Self-assembly of Ni2P nanowires as high-efficiency electrocatalyst for dye-sensitized solar cells. MRS Communications, 2012, 2, 97-99.	1.8	7
136	Exploratory Study of Zn _{<i>x</i>} PbO _{<i>y</i>} Photoelectrodes for Unassisted Overall Solar Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10918-10926.	8.0	7
137	Diaquabis[5-(pyrazin-2-yl)tetrazolato]iron(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m450-m451.	0.2	6
138	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	3.7	4
139	Ultralong-life lithium metal batteries enabled by decorating robust hybrid interphases on 3D layered framworks. Chinese Chemical Letters, 2023, 34, 107602.	9.0	4
140	Bis[aquachlorobis(1,10-phenanthroline)cadmium(II)] benzene-1,4-dioxydiacetate sesquihydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m1979-m1981.	0.2	3
141	Diaquabis[5-(pyrazin-2-yl)tetrazolato]cobalt(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1591-m1591.	0.2	3
142	Boosting Electrochemical Performance of Hematite Nanorods via Quenching-Induced Alkaline Earth Metal Ion Doping. Processes, 2021, 9, 1102.	2.8	2