Fabien Le Grand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6148901/publications.pdf

Version: 2024-02-01

38 papers 5,733 citations

218592 26 h-index 330025 37 g-index

47 all docs

47 docs citations

47 times ranked

6887 citing authors

#	Article	IF	CITATIONS
1	TGFÎ ² signaling curbs cell fusion and muscle regeneration. Nature Communications, 2021, 12, 750.	5.8	61
2	AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle. Journal of Physiology, 2021, 599, 3081-3100.	1.3	6
3	Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophysical Journal, 2021, 120, 2665-2678.	0.2	13
4	SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development (Cambridge), 2020, 147, .	1.2	6
5	High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Molecular Cell, 2019, 74, 609-621.e6.	4.5	271
6	La signalisation TGFÎ 2 contrÃ 2 le la fusion cellulaire et la rÃ $^\odot$ gÃ $^\odot$ nÃ $^\odot$ ration musculaire. Les Cahiers De Myologie, 2019, , 33-34.	0.0	0
7	ÂÂÂMechanosensitivity of aged muscle stem cells. Journal of Orthopaedic Research, 2018, 36, 632-641.	1.2	29
8	Satellite Cell Self-Renewal. Current Topics in Developmental Biology, 2018, 126, 177-203.	1.0	37
9	Wnt Signaling in Skeletal Muscle Development and Regeneration. Progress in Molecular Biology and Translational Science, 2018, 153, 157-179.	0.9	116
10	R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways. Cell Reports, 2017, 18, 2320-2330.	2.9	40
11	Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration. Acta Neuropathologica, 2017, 134, 869-888.	3.9	20
12	BMP signaling regulates satellite cell dependent postnatal muscle growth. Development (Cambridge), 2017, 144, 2737-2747.	1.2	34
13	Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Scientific Reports, 2016, 6, 19196.	1.6	44
14	Î ² -Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair. Cell Reports, 2016, 15, 1277-1290.	2.9	100
15	Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Scientific Reports, 2016, 6, 27804.	1.6	26
16	Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discovery, 2016, 2, 16037.	3.1	26
17	Wnt/ \hat{l}^2 -catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skeletal Muscle, 2015, 5, 14.	1.9	75
18	APC is required for muscle stem cell proliferation and skeletal muscle tissue repair. Journal of Cell Biology, 2015, 210, 717-726.	2.3	48

#	Article	IF	CITATIONS
19	Specific pattern of cell cycle during limb fetal myogenesis. Developmental Biology, 2014, 392, 308-323.	0.9	18
20	Human and Murine Skeletal Muscle Reserve Cells. Methods in Molecular Biology, 2013, 1035, 165-177.	0.4	10
21	Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration. Journal of Cell Biology, 2012, 198, 815-832.	2.3	96
22	Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Developmental Biology, 2011, 359, 303-320.	0.9	59
23	Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Human Molecular Genetics, 2011, 20, 694-704.	1.4	87
24	Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 2010, 12, 153-163.	4.6	1,299
25	Bmp Signaling at the Tips of Skeletal Muscles Regulates the Number of Fetal Muscle Progenitors and Satellite Cells during Development. Developmental Cell, 2010, 18, 643-654.	3.1	105
26	Oxidative status of muscle is determined by p107 regulation of PGC- $1\hat{l}_{\pm}$. Journal of Cell Biology, 2010, 190, 651-662.	2.3	19
27	Oxidative status of muscle is determined by p107 regulation of PGC-1a. Journal of General Physiology, 2010, 136, i3-i3.	0.9	0
28	p38-γ–dependent gene silencing restricts entry into the myogenic differentiation program. Journal of Cell Biology, 2009, 187, 991-1005.	2.3	105
29	Wnt7a Activates the Planar Cell Polarity Pathway to Drive the Symmetric Expansion of Satellite Stem Cells. Cell Stem Cell, 2009, 4, 535-547.	5 . 2	435
30	Autocrine and Paracrine Angiopoietin $1/\text{Tie-2}$ Signaling Promotes Muscle Satellite Cell Self-Renewal. Cell Stem Cell, 2009, 5, 298-309.	5.2	197
31	Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nature Cell Biology, 2008, 10, 77-84.	4.6	323
32	The Molecular Regulation of Muscle Stem Cell Function. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 323-331.	2.0	214
33	Megf10 regulates the progression of the satellite cell myogenic program. Journal of Cell Biology, 2007, 179, 911-922.	2.3	79
34	Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle. Cell, 2007, 129, 999-1010.	13.5	1,145
35	Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology, 2007, 19, 628-633.	2.6	415
36	Resident Endothelial Precursors in Muscle, Adipose, and Dermis Contribute to Postnatal Vasculogenesis. Stem Cells, 2007, 25, 3101-3110.	1.4	77

#	ŧ	Article	lF	CITATIONS
3'	7	Endothelial cells within embryonic skeletal muscles: a potential source of myogenic progenitors. Experimental Cell Research, 2004, 301, 232-241.	1.2	26
3	8	Developmental Behavior of Embryonic Myogenic Progenitors Transplanted into Adult Muscle as Revealed by Desmin LacZ Recombinant Gene. Journal of Histochemistry and Cytochemistry, 2003, 51, 1255-1267.	1.3	5