Eugenia Morselli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6147668/publications.pdf

Version: 2024-02-01

71 papers 13,842 citations

71102 41 h-index 70 g-index

73 all docs 73 docs citations

times ranked

73

25176 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 2008, 10, 676-687.	10.3	1,025
3	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	11.2	599
4	Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death and Disease, 2010, 1, e10-e10.	6.3	518
5	Autophagy regulation by p53. Current Opinion in Cell Biology, 2010, 22, 181-185.	5.4	450
6	Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. Journal of Cell Biology, 2011, 192, 615-629.	5.2	439
7	Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A. Molecular Cell, 2014, 53, 710-725.	9.7	412
8	Control of autophagy by oncogenes and tumor suppressor genes. Cell Death and Differentiation, 2009, 16, 87-93.	11.2	389
9	Viral Control of Mitochondrial Apoptosis. PLoS Pathogens, 2008, 4, e1000018.	4.7	379
10	A dual role of p53 in the control of autophagy. Autophagy, 2008, 4, 810-814.	9.1	296
11	The IKK complex contributes to the induction of autophagy. EMBO Journal, 2010, 29, 619-631.	7.8	274
12	Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle, 2009, 8, 1571-1576.	2.6	263
13	Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle, 2008, 7, 3056-3061.	2.6	262
14	miR-181a and miR-630 Regulate Cisplatin-Induced Cancer Cell Death. Cancer Research, 2010, 70, 1793-1803.	0.9	262
15	The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death and Differentiation, 2009, 16 , $1006-1017$.	11.2	258
16	Mitochondrial gateways to cancer. Molecular Aspects of Medicine, 2010, 31, 1-20.	6.4	239
17	Senescence, Apoptosis or Autophagy?. Gerontology, 2008, 54, 92-99.	2.8	220
18	Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene, 2008, 27, 4221-4232.	5.9	183

#	Article	IF	CITATIONS
19	Autophagy mediates pharmacological lifespan extension by spermidineand resveratrol. Aging, 2009, 1, 961-970.	3.1	180
20	Hypothalamic PGC-1α Protects Against High-Fat Diet Exposure by Regulating ERα. Cell Reports, 2014, 9, 633-645.	6.4	159
21	p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle, 2011, 10, 2763-2769.	2.6	131
22	The life span-prolonging effect of Sirtuin-1 is mediated by autophagy. Autophagy, 2010, 6, 186-188.	9.1	127
23	The effects of oestrogens and their receptors on cardiometabolic health. Nature Reviews Endocrinology, 2017, 13, 352-364.	9.6	122
24	Life, death and burial: multifaceted impact of autophagy. Biochemical Society Transactions, 2008, 36, 786-790.	3.4	117
25	BH3 mimetics activate multiple pro-autophagic pathways. Oncogene, 2011, 30, 3918-3929.	5.9	111
26	Targeting p53 to mitochondria for cancer therapy. Cell Cycle, 2008, 7, 1949-1955.	2.6	110
27	Fibroblast Primary Cilia Are Required for Cardiac Fibrosis. Circulation, 2019, 139, 2342-2357.	1.6	101
28	p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle, 2008, 7, 3006-3011.	2.6	97
29	Oncosuppressive Functions of Autophagy. Antioxidants and Redox Signaling, 2011, 14, 2251-2269.	5.4	86
30	Inhibition of autophagy by TAB2 and TAB3. EMBO Journal, 2011, 30, 4908-4920.	7.8	85
31	Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology, 2017, 158, 1095-1105.	2.8	85
32	Estrogen, astrocytes and the neuroendocrine control of metabolism. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 331-338.	5.7	70
33	Mitochondrial Liaisons of p53. Antioxidants and Redox Signaling, 2011, 15, 1691-1714.	5.4	66
34	Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72. Frontiers in Molecular Neuroscience, 2017, 10, 170.	2.9	66
35	Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state?. Free Radical Biology and Medicine, 2018, 124, 61-78.	2.9	61
36	A sexually dimorphic hypothalamic response to chronic high-fat diet consumption. International Journal of Obesity, 2016, 40, 206-209.	3.4	59

#	Article	IF	CITATIONS
37	Viral strategies for the evasion of immunogenic cell death. Journal of Internal Medicine, 2010, 267, 526-542.	6.0	53
38	Defective autophagy control by the p53 rheostat in cancer. Cell Cycle, 2010, 9, 250-255.	2.6	48
39	IKK connects autophagy to major stress pathways. Autophagy, 2010, 6, 189-191.	9.1	46
40	Maternal high-fat diet is associated with impaired fetal lung development. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L360-L368.	2.9	44
41	Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice. Molecular Metabolism, 2016, 5, 680-689.	6.5	43
42	Mechanisms of p53-mediated mitochondrial membrane permeabilization. Cell Research, 2008, 18, 708-710.	12.0	42
43	$ER\hat{l}\pmupregulates$ Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue. Molecular Metabolism, 2014, 3, 642-651.	6.5	39
44	Palmitic Acid Reduces the Autophagic Flux and Insulin Sensitivity Through the Activation of the Free Fatty Acid Receptor 1 (FFAR1) in the Hypothalamic Neuronal Cell Line N43/5. Frontiers in Endocrinology, 2019, 10, 176.	3.5	38
45	Upregulation of nuclear-encoded mitochondrial LON protease in HAART-treated HIV-positive patients with lipodystrophy: implications for the pathogenesis of the disease. Aids, 2010, 24, 841-850.	2.2	35
46	Longevity-relevant regulation of autophagy at the level of the acetylproteome. Autophagy, 2011, 7, 647-649.	9.1	34
47	Sex and Gender: Critical Variables in Pre-Clinical and Clinical Medical Research. Cell Metabolism, 2016, 24, 203-209.	16.2	34
48	Chronic High Fat Diet Consumption Impairs Metabolic Health of Male Mice. Inflammation and Cell Signaling, 2014, 1, e561.	1.6	34
49	Hyperosmotic stress stimulates autophagy via polycystin-2. Oncotarget, 2017, 8, 55984-55997.	1.8	34
50	Phosphoproteomic analysis of cells treated with longevity-related autophagy inducers. Cell Cycle, 2012, 11, 1827-1840.	2.6	33
51	Polycystin-2-dependent control of cardiomyocyte autophagy. Journal of Molecular and Cellular Cardiology, 2018, 118, 110-121.	1.9	32
52	Direct molecular interactions between Beclin 1 and the canonical NFÎ $^\circ$ B activation pathway. Autophagy, 2012, 8, 268-270.	9.1	31
53	Impact of estrogens and estrogen receptor- \hat{l}_{\pm} in brain lipid metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E7-E14.	3.5	30
54	Mechanobiology of Autophagy: The Unexplored Side of Cancer. Frontiers in Oncology, 2021, 11, 632956.	2.8	26

#	Article	IF	Citations
55	New Roles of the Primary Cilium in Autophagy. BioMed Research International, 2017, 2017, 1-16.	1.9	22
56	Role of Autophagy in the Microenvironment of Oral Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 602661.	2.8	21
57	PKD2/polycystin-2 induces autophagy by forming a complex with BECN1. Autophagy, 2021, 17, 1714-1728.	9.1	21
58	Palmitic acid reduces the autophagic flux in hypothalamic neurons by impairing autophagosome-lysosome fusion and endolysosomal dynamics. Molecular and Cellular Oncology, 2020, 7, 1789418.	0.7	20
59	AGPAT2 deficiency impairs adipogenic differentiation in primary cultured preadipocytes in a non-autophagy or apoptosis dependent mechanism. Biochemical and Biophysical Research Communications, 2015, 467, 39-45.	2.1	18
60	Updates on the neurobiology of food reward and their relation to the obesogenic environment. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 292-297.	2.3	15
61	Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Frontiers in Oncology, 2021, 11, 637594.	2.8	14
62	Brain site-specific regulation of hedonic intake by orexin and DYN peptides: role of the PVN and obesity. Nutritional Neuroscience, 2022, 25, 1105-1114.	3.1	12
63	New emerging roles of Polycystin-2 in the regulation of autophagy. International Review of Cell and Molecular Biology, 2020, 354, 165-186.	3.2	5
64	Polycystin-2 Is Required for Starvation- and Rapamycin-Induced Atrophy in Myotubes. Frontiers in Endocrinology, 2019, 10, 280.	3.5	4
65	Integrating the effects of sucrose intake on the brain and white adipose tissue: Could autophagy be a possible link?. Obesity, 2022, 30, 1143-1155.	3.0	4
66	Limited Heme Oxygenase Contribution to Modulating the Severity of Salmonella enterica serovar Typhimurium Infection. Antioxidants, 2022, 11, 1040.	5.1	3
67	Palmitic and Stearic Acids Inhibit Chaperone-Mediated Autophagy (CMA) in POMC-like Neurons In Vitro. Cells, 2022, 11, 920.	4.1	2
68	Editorial: Free Fatty Acids as Signaling Molecules: Role of Free Fatty Acid Receptors and CD36. Frontiers in Physiology, 2022, 13, 862458.	2.8	1
69	Preeclampsia and ox-LDL modify the expression of autophagy markers in placenta and first trimester trophoblast cell line impairing trophoblast invasion and migration Placenta, 2019, 83, e104-e105.	1.5	0
70	Editorial: New Roles of Autophagy Pathways in Cancer. Frontiers in Oncology, 2021, 11, 726989.	2.8	0
71	The Recycling System in Cells That Helps to Prevent Obesity. Frontiers for Young Minds, 0, 9, .	0.8	0