
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6147428/publications.pdf Version: 2024-02-01

LUCA REDNADDI

#	Article	IF	CITATIONS
1	Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst. Angewandte Chemie - International Edition, 2005, 44, 6576-6579.	13.8	429
2	The Emergence of Quinone Methides in Asymmetric Organocatalysis. Molecules, 2015, 20, 11733-11764.	3.8	287
3	Organocatalytic Asymmetric Diels–Alder Reactions of 3â€Vinylindoles. Angewandte Chemie - International Edition, 2008, 47, 9236-9239.	13.8	217
4	Phase-Transfer-Catalyzed Asymmetric Aza-Henry Reaction UsingN-Carbamoyl Imines Generated In Situ from α-Amido Sulfones. Angewandte Chemie - International Edition, 2005, 44, 7975-7978.	13.8	170
5	Organocatalytic asymmetric Povarov reactions with 2- and 3-vinylindoles. Chemical Communications, 2010, 46, 327-329.	4.1	165
6	Catalytic Asymmetric Mannich Reactions of Glycine Derivatives with Imines. A New Approach to Optically Active α,β-Diamino Acid Derivatives. Journal of Organic Chemistry, 2003, 68, 2583-2591.	3.2	160
7	Organocatalytic Asymmetric Direct α-Alkynylation of Cyclic β-Ketoesters. Journal of the American Chemical Society, 2007, 129, 441-449.	13.7	153
8	Chitosan aerogel: a recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water. Chemical Communications, 2010, 46, 6288.	4.1	150
9	An Easy Entry to Optically Active Spiroindolinones: Chiral BrÃ,nsted Acid atalysed Pictet–Spengler Reactions of Isatins. Advanced Synthesis and Catalysis, 2011, 353, 860-864.	4.3	149
10	Organocatalytic Asymmetric 1,6-Additions of β-Ketoesters and Glycine Imine. Journal of the American Chemical Society, 2007, 129, 5772-5778.	13.7	142
11	Enantioselective aza-Henry reaction using cinchona organocatalysts. Tetrahedron, 2006, 62, 375-380.	1.9	138
12	Direct Access to Enantiomerically Enriched α-Amino Phosphonic Acid Derivatives by Organocatalytic Asymmetric Hydrophosphonylation of Imines. Journal of Organic Chemistry, 2006, 71, 6269-6272.	3.2	137
13	Catalytic Asymmetric Conjugate Addition of Nitroalkanes to 4â€Nitroâ€5â€styrylisoxazoles. Angewandte Chemie - International Edition, 2009, 48, 9342-9345.	13.8	137
14	Catalytic Asymmetric Aza-Diels–Alder Reactions: The Povarov Cycloaddition Reaction. Synthesis, 2014, 46, 135-157.	2.3	123
15	An Easy Approach to Optically Active α-Amino Phosphonic Acid Derivatives by Chiral Zn(II)-Catalyzed Enantioselective Amination of Phosphonates. Journal of the American Chemical Society, 2005, 127, 5772-5773.	13.7	120
16	Organocatalytic Asymmetric Mannich Reactions with <i>N</i> â€Boc and <i>N</i> â€Cbz Protected αâ€Amido Sulfones (Boc: <i>tert</i> â€Butoxycarbonyl, Cbz: Benzyloxycarbonyl). Chemistry - A European Journal, 2007, 13, 8338-8351.	3.3	113
17	Organocatalytic Enantioselective Decarboxylative Addition of Malonic Half Thioesters to Imines. Advanced Synthesis and Catalysis, 2007, 349, 1037-1040.	4.3	112
18	Organocatalytic Enantioselective Nucleophilic Vinylic Substitution. Angewandte Chemie - International Edition, 2006, 45, 6551-6554.	13.8	110

#	Article	IF	CITATIONS
19	Enantioselective chlorination and fluorination of β-keto phosphonates catalyzed by chiral Lewis acids. Chemical Communications, 2005, , 1324-1326.	4.1	108
20	Catalytic Asymmetric Addition of Meldrum's Acid, Malononitrile, and 1,3â€Dicarbonyls to <i>ortho</i> â€Quinone Methides Generated In Situ Under Basic Conditions. Chemistry - A European Journal, 2015, 21, 6037-6041.	3.3	106
21	Organocatalytic Asymmetric Conjugate Addition to Allenic Esters and Ketones. Journal of the American Chemical Society, 2008, 130, 4897-4905.	13.7	101
22	Bioinspired organocatalytic asymmetric reactions. Organic and Biomolecular Chemistry, 2012, 10, 2911.	2.8	101
23	Organocatalytic Asymmetric Formal [3 + 2] Cycloaddition with in Situ-Generated <i>N</i> -Carbamoyl Nitrones. Journal of the American Chemical Society, 2009, 131, 9614-9615.	13.7	99
24	Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chemical Communications, 2014, 50, 7773.	4.1	90
25	Sulfoxonium ylides: simple compounds with chameleonic reactivity. Organic and Biomolecular Chemistry, 2020, 18, 8793-8809.	2.8	86
26	Nucleophilic Dearomatization of Activated Pyridines. Catalysts, 2018, 8, 632.	3.5	83
27	Phase Transfer Catalyzed Enantioselective Strecker Reactions of α-Amido Sulfones with Cyanohydrins. Journal of Organic Chemistry, 2006, 71, 9869-9872.	3.2	81
28	Catalytic Asymmetric Mannich Reactions of Sulfonylacetates. Angewandte Chemie - International Edition, 2009, 48, 5694-5697.	13.8	80
29	Catalytic Enantioselective Addition of Indoles to Activated <i>N</i> -Benzylpyridinium Salts: Nucleophilic Dearomatization of Pyridines with Unusual C-4 Regioselectivity. ACS Catalysis, 2016, 6, 6473-6477.	11.2	77
30	Self-healing alginate–gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters. Materials Chemistry Frontiers, 2017, 1, 73-79.	5.9	77
31	Phase-Transfer-Catalyzed Enantioselective Mannich Reaction of Malonates with α-Amido Sulfones. Advanced Synthesis and Catalysis, 2006, 348, 2043-2046.	4.3	74
32	Organocatalyzed Solvent-Free Aza-Henry Reaction:Â A Breakthrough in the One-Pot Synthesis of 1,2-Diamines. Journal of Organic Chemistry, 2004, 69, 8168-8171.	3.2	69
33	Centralâ€ŧoâ€Axial Chirality Conversion Approach Designed on Organocatalytic Enantioselective Povarov Cycloadditions: First Access to Configurationally Stable Indole–Quinoline Atropisomers. Chemistry - A European Journal, 2019, 25, 15694-15701.	3.3	62
34	Catalytic highly enantioselective vinylogous Povarov reaction. Chemical Communications, 2013, 49, 880-882.	4.1	58
35	Organocatalytic trifluoromethylation of imines using phase-transfer catalysis with phenoxides. A general platform for catalytic additions of organosilanes to imines. Chemical Communications, 2012, 48, 1428-1430.	4.1	57
36	Organocatalytic asymmetric aza-Michael reaction: enantioselective addition of O-benzylhydroxylamine to chalcones. Tetrahedron Letters, 2007, 48, 7805-7808.	1.4	53

#	Article	IF	CITATIONS
37	Catalytic Asymmetric Inverseâ€Electronâ€Demand (IED) [4+2] Cycloaddition of Salicylaldimines: Preparation of Optically Active 4â€Aminobenzopyran Derivatives. Advanced Synthesis and Catalysis, 2010, 352, 3399-3406.	4.3	52
38	Chitosan Aerogel Beads as a Heterogeneous Organocatalyst for the Asymmetric Aldol Reaction in the Presence of Water: An Assessment of the Effect of Additives. European Journal of Organic Chemistry, 2013, 2013, 588-594.	2.4	51
39	Nucleophilic Dearomatization of Pyridines under Enamine Catalysis: Regio-, Diastereo-, and Enantioselective Addition of Aldehydes to Activated <i>N</i> -Alkylpyridinium Salts. Organic Letters, 2017, 19, 834-837.	4.6	51
40	Catalytic Asymmetric Reactions of 4‣ubstituted Indoles with Nitroethene: A Direct Entry to Ergot Alkaloid Structures. Chemistry - A European Journal, 2015, 21, 17578-17582.	3.3	46
41	Solventâ€Free Nonâ€Covalent Organocatalysis: Enantioselective Addition of Nitroalkanes to Alkylideneindolenines as a Flexible Gateway to Optically Active Tryptamine Derivatives. Advanced Synthesis and Catalysis, 2012, 354, 1373-1380.	4.3	43
42	An easy entry to optically active α-amino phosphonic acid derivatives using phase-transfer catalysis (PTC). Chemical Communications, 2008, , 4345.	4.1	42
43	Organometallic Reactions in Aqueous Media:Â Indium-Promoted Additions to 2-Pyridyl and Glyoxylic Acid Oxime Ethers. Journal of Organic Chemistry, 2003, 68, 3348-3351.	3.2	36
44	Sodium and acidic alginate foams with hierarchical porosity: Preparation, characterization and efficiency as a dye adsorbent. Carbohydrate Polymers, 2017, 178, 78-85.	10.2	35
45	Regiocontrolled Synthesis of Ringâ€Fused Thieno[2,3â€ <i>c</i>]pyrazoles through 1,3â€Dipolar Cycloaddition of Nitrile Imines with Sulfurâ€Based Acetylenes. European Journal of Organic Chemistry, 2010, 2010, 6440-6447.	2.4	33
46	Asymmetric synthesis of 3,4-annulated indoles through an organocatalytic cascade approach. Chemical Communications, 2014, 50, 445-447.	4.1	33
47	Catalytic highly enantioselective transfer hydrogenation of β-trifluoromethyl nitroalkenes. An easy and general entry to optically active β-trifluoromethyl amines. Chemical Communications, 2015, 51, 658-660.	4.1	33
48	A Broadened Scope for the Use of Hydrazones as Neutral Nucleophiles in the Presence of H-Bonding Organocatalysts. Synlett, 2006, 2006, 239-242.	1.8	31
49	Asymmetric Synthesis of α,βâ€Diaminophosphonic Acid Derivatives with a Catalytic Enantioselective Mannich Reaction. Advanced Synthesis and Catalysis, 2009, 351, 2283-2287.	4.3	30
50	Alginic acid aerogel: a heterogeneous BrÃ,nsted acid promoter for the direct Mannich reaction. New Journal of Chemistry, 2015, 39, 4222-4226.	2.8	29
51	Synthesis of α-Hydrazino Ketones via Regio- and Stereoselective Electrophilic Amination of Manganese Enolates and Enamines. Journal of Organic Chemistry, 2004, 69, 8525-8528.	3.2	28
52	A New and Practical Procedure for the Bruylants Reaction. Zinc-Mediated Synthesis of Tertiary Homoallylamines and β-Aminoesters. Synlett, 2003, 2003, 1778-1782.	1.8	22
53	First 1,3-dipolar cycloaddition of Z-α-phenyl-N-methylnitrone with allylic fluorides: a stereoselective route to enantiopure fluorine-containing isoxazolidines and amino polyols. Tetrahedron: Asymmetry, 2004, 15, 245-250.	1.8	22
54	Organocatalytic Enantioselective Transfer Hydrogenation of βâ€Amino Nitroolefins. Advanced Synthesis and Catalysis, 2016, 358, 1561-1565.	4.3	22

#	Article	IF	CITATIONS
55	Concise and Stereocontrolled Synthesis of Pseudo-C2-symmetric Diamino Alcohols and Triamines for Use in HIV Protease Inhibitors. Journal of Organic Chemistry, 2003, 68, 1418-1425.	3.2	21
56	Dynamic control over catalytic function using responsive bisthiourea catalysts. Organic and Biomolecular Chemistry, 2017, 15, 8285-8294.	2.8	21
57	Catalytic Enantioselective Povarov Reactions of Ferrocenecarbaldehydeâ€Derived Imines – BrÃ,nsted Acid Catalysis at Partsâ€Perâ€Million Level Loading. Advanced Synthesis and Catalysis, 2018, 360, 893-900.	4.3	21
58	One-Pot Synthesis of Optically Active β-Amino-α-methylene Carbonyl Derivatives From α-Amidosulfones Using Quinine-Based Phase-Transfer Catalysts. Organic Process Research and Development, 2010, 14, 687-691.	2.7	20
59	Organocatalytic Asymmetric Mannich Reactions in the Preparation of Enantioenriched β3-Amino Acid Derivatives. Current Organic Chemistry, 2011, 15, 2210-2226.	1.6	19
60	Organocatalytic Asymmetric Sulfaâ€Michael Addition of 2â€Aminothiophenols to Chalcones: First Enantioselective Access to 2,3,4,5â€Tetrahydroâ€1,5â€benzothiazepines. European Journal of Organic Chemistry, 2017, 2017, 49-52.	2.4	19
61	Synthesis of new central and planar chiral enantiomerically pure 5-ferrocenyl-oxazolines and a 5-ferrocenyl-thiazoline. Tetrahedron: Asymmetry, 2004, 15, 1133-1140.	1.8	17
62	One-Pot Synthesis of Novel Enantiomerically Pure and Racemic 4-Ferrocenyl-β-lactams and Their Reactivity in Acidic Media. European Journal of Organic Chemistry, 2005, 2005, 3326-3333.	2.4	16
63	Enantioselective Approaches to 3,4-Annulated Indoles Using Organocatalytic Domino Reactions. Synlett, 2017, 28, 1530-1543.	1.8	16
64	An organocatalytic enantioselective direct α-heteroarylation of aldehydes with isoquinoline <i>N</i> -oxides. Chemical Communications, 2018, 54, 3977-3980.	4.1	16
65	Enantioselective organocatalytic approaches to active pharmaceutical ingredients – selected industrial examples. Physical Sciences Reviews, 2019, 4, .	0.8	16
66	Organocatalytic Asymmetric Conjugate Additions to Cyclopentâ€1â€enecarbaldehyde: A Critical Assessment of Organocatalytic Approaches towards the Telaprevir Bicyclic Core. Chemistry - A European Journal, 2015, 21, 19208-19222.	3.3	15
67	Stereodivergent entry to β-branched β-trifluoromethyl α-amino acid derivatives by sequential catalytic asymmetric reactions. Chemical Science, 2021, 12, 10233-10241.	7.4	15
68	An Atropisomerically Enforced Phosphoric Acid for Organocatalytic Asymmetric Reactions. European Journal of Organic Chemistry, 2016, 2016, 3208-3216.	2.4	14
69	Cyclopenta[b]thiophene-alkyloxazolines: new nitrogen–sulfur hybrid ligands and their use in asymmetric palladium-catalyzed allylic alkylation. Tetrahedron: Asymmetry, 2004, 15, 1043-1051.	1.8	13
70	A General Catalytic Enantioselective Transfer Hydrogenation Reaction of β,β-Disubstituted Nitroalkenes Promoted by a Simple Organocatalyst. Molecules, 2016, 21, 1000.	3.8	13
71	Chiral oxazoline-1,3-dithianes: new effective nitrogen–sulfur donating ligands in asymmetric catalysis. Tetrahedron: Asymmetry, 2005, 16, 3232-3240.	1.8	12
72	Adsorption of a Chiral Amine on Alginate Gel Beads and Evaluation of its Efficiency as Heterogeneous Enantioselective Catalyst. European Journal of Organic Chemistry, 2019, 2019, 3842-3849.	2.4	11

#	Article	IF	CITATIONS
73	Organocatalysis in the Asymmetric Synthesis of Nitrogen-Containing Compounds: How and Why. Chimia, 2007, 61, 224-231.	0.6	10
74	γâ€Regioselective Functionalization of 3â€Alkenylindoles <i>via</i> 1,6â€Addition to Extended Alkylideneindolenine Intermediates. Advanced Synthesis and Catalysis, 2018, 360, 1296-1302.	4.3	10
75	Alginate: A Versatile Biopolymer for Functional Advanced Materials for Catalysis. Studies in Surface Science and Catalysis, 2019, , 357-375.	1.5	10
76	Chemodivergent Preparation of Various Heterocycles <i>via</i> Phaseâ€Transfer Catalysis: Enantioselective Synthesis of Functionalized Piperidines. Advanced Synthesis and Catalysis, 2020, 362, 1167-1175.	4.3	10
77	An Entry to Enantioenriched 3,3-Disubstituted Phthalides through Asymmetric Phase-Transfer-Catalyzed γ-Alkylation. Journal of Organic Chemistry, 2020, 85, 7476-7484.	3.2	10
78	Asymmetric trifluoromethylthiolation of azlactones under chiral phase transfer catalysis. Organic and Biomolecular Chemistry, 2020, 18, 2914-2920.	2.8	10
79	Blue Chemistry. Marine Polysaccharide Biopolymers in Asymmetric Catalysis: Challenges and Opportunities. European Journal of Organic Chemistry, 2020, 2020, 3779-3795.	2.4	10
80	Organocatalyzed Enantioselective Synthesis of Nitroalkanes Bearing All-Carbon Quaternary Stereogenic Centers through Conjugate Addition of Acetone Cyanohydrin. Synlett, 2008, 2008, 1857-1861.	1.8	9
81	Synergistic Palladium-Phosphoric Acid Catalysis in (3 + 2) Cycloaddition Reactions between Vinylcyclopropanes and Imines. Catalysts, 2020, 10, 150.	3.5	9
82	Asymmetric Organocatalysis and Continuous Chemistry for an Efficient and Cost-Competitive Process to Pregabalin. Organic Process Research and Development, 2021, 25, 2795-2805.	2.7	9
83	Asymmetric Diels-Alder Reactions of Vinylindoles Using Organocatalysis. Synthesis, 2010, 2010, 161-170.	2.3	7
84	Organocatalytic Asymmetric Wittig Reactions: Generation of Enantioenriched Axially Chiral Olefins Breaking a Symmetry Plane. Synlett, 2011, 2011, 2745-2749.	1.8	7
85	Catalyst―and Substrateâ€Dependent Chemodivergent Reactivity of Stabilised Sulfur Ylides with Salicylaldehydes. Advanced Synthesis and Catalysis, 2021, 363, 3053-3059.	4.3	7
86	Synthesis and Chemistry of New Central and Planar Chiral Sulfur-Containing Ferrocenyl Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1273-1277.	1.6	6
87	Towards the Synthesis of Highly Functionalized Chiral α-Amino Nitriles by Aminative Cyanation and Their Synthetic Applications. European Journal of Organic Chemistry, 2006, 2006, 207-217.	2.4	6
88	Reversible modulation of the activity of thiourea catalysts with anions: a simple approach to switchable asymmetric catalysis. RSC Advances, 2016, 6, 66490-66494.	3.6	6
89	Experimental and Computational Investigation of the 1,3â€Dipolar Cycloaddition of the Ynamide <i>tert</i> â€Butyl <i>N</i> â€Ethynylâ€ <i>N</i> â€phenylcarbamate with <i>C</i> â€Carboxymethylâ€ <i>N</i> â€phenylnitrilimine. European Journal of Organic Chemistry, 2013, 2013, 8108-8114.	2.4	3
90	Investigation of Squaramide Catalysts in the Aldol Reaction en Route to Funapide. European Journal of Organic Chemistry, 0, , .	2.4	3

#	Article	IF	CITATIONS
91	Diverse exploitation of BrÃnsted acid catalysts – paving the way for simple access to enantioenriched amines. Organic Chemistry Frontiers, 2017, 4, 1651-1654.	4.5	1
92	Diastereoselective additions of organometallic reagents to (SFc)-2-p-tolylsulfanylferrocene carboxyaldehyde and to (SFc)-2-p-tolylsulfanyl ferrocenyl imines. Synthesis of new central and planar chiral ferrocenyl alcohols and amines Arkivoc, 2004, 2004, 72-90.	0.5	1
93	Organometallic Reactions in Aqueous Media: Indium-Promoted Additions to 2-Pyridyl and Glyoxylic Acid Oxime Ethers ChemInform, 2003, 34, no.	0.0	0
94	A New and Practical Procedure for the Bruylants Reaction. Zinc-Mediated Synthesis of Tertiary Homoallylamines and β-Aminoesters ChemInform, 2004, 35, no.	0.0	0
95	Cyclopenta[b]thiophene-alkyloxazolines: New Nitrogen—Sulfur Hybrid Ligands and Their Use in Asymmetric Palladium-Catalyzed Allylic Alkylation ChemInform, 2004, 35, no.	0.0	0
96	Organocatalyzed Solvent-Free Aza-Henry Reaction: A Breakthrough in the One-Pot Synthesis of 1,2-Diamines ChemInform, 2005, 36, no.	0.0	0
97	Synthesis of ?-Hydrazino Ketones via Regio- and Stereoselective Electrophilic Amination of Manganese Enolates and Enamines ChemInform, 2005, 36, no.	0.0	0
98	Enantioselective Chlorination and Fluorination of β-Keto Phosphonates Catalyzed by Chiral Lewis Acids ChemInform, 2005, 36, no.	0.0	0
99	An Easy Approach to Optically Active α-Amino Phosphonic Acid Derivatives by Chiral Zn(II)-Catalyzed Enantioselective Amination of Phosphonates ChemInform, 2005, 36, no.	0.0	0
100	Catalytic Enantioselective Friedel—Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst ChemInform, 2006, 37, no.	0.0	0