
Enrique Rozengurt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6146758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer and Metastasis Reviews, 2021, 40, 865-878.	5.9	20
2	Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers, 2021, 13, 5067.	3.7	25
3	Crosstalk between KRAS, SRC and YAP Signaling in Pancreatic Cancer: Interactions Leading to Aggressive Disease and Drug Resistance. Cancers, 2021, 13, 5126.	3.7	18
4	Ligation of HLA Class I Molecules Induces YAP Activation through Src in Human Endothelial Cells. Journal of Immunology, 2020, 205, 1953-1961.	0.8	6
5	Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. Journal of Cellular Physiology, 2020, 235, 8334-8344.	4.1	8
6	Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development. World Journal of Gastroenterology, 2019, 25, 1797-1816.	3.3	17
7	Metformin alters the duodenal microbiome and decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity. American Journal of Physiology - Renal Physiology, 2019, 317, G763-G772.	3.4	34
8	Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice. PLoS ONE, 2019, 14, e0216603.	2.5	34
9	Metformin inhibits β-catenin phosphorylation on Ser-552 through an AMPK/PI3K/Akt pathway in colorectal cancer cells. International Journal of Biochemistry and Cell Biology, 2019, 112, 88-94.	2.8	32
10	Protein kinase D1 inhibition interferes with mitosis progression. Journal of Cellular Physiology, 2019, 234, 20510-20519.	4.1	5
11	KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Seminars in Cancer Biology, 2019, 54, 50-62.	9.6	55
12	HLA Class II–Triggered Signaling Cascades Cause Endothelial Cell Proliferation and Migration: Relevance to Antibody-Mediated Transplant Rejection. Journal of Immunology, 2018, 200, 2372-2390.	0.8	44
13	Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduction and Targeted Therapy, 2018, 3, 11.	17.1	112
14	Metformin Decreases the Incidence of Pancreatic Ductal Adenocarcinoma Promoted by Diet-induced Obesity in the Conditional KrasG12D Mouse Model. Scientific Reports, 2018, 8, 5899.	3.3	34
15	Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection. American Journal of Transplantation, 2018, 18, 1096-1109.	4.7	29
16	Deficiency in hormone-sensitive lipase accelerates the development of pancreatic cancer in conditional KrasG12D mice. BMC Cancer, 2018, 18, 797.	2.6	15
17	Direct growth-inhibitory effects of prostaglandin E2 inÂpancreatic cancer cells inÂvitro through an EP4/PKA-mediated mechanism. Surgery, 2017, 161, 1570-1578.	1.9	7
18	Protein kinase D1 (PKD1) phosphorylation on Ser203 by type I p21-activated kinase (PAK) regulates PKD1 localization. Journal of Biological Chemistry, 2017, 292, 9523-9539.	3.4	10

#	Article	IF	CITATIONS
19	Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Molecular Cancer Research, 2017, 15, 929-941.	3.4	49
20	Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE, 2017, 12, e0184455.	2.5	107
21	Biphasic Regulation of Yes-associated Protein (YAP) Cellular Localization, Phosphorylation, and Activity by G Protein-coupled Receptor Agonists in Intestinal Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 17988-18005.	3.4	38
22	Positive cross talk between protein kinase D and β-catenin in intestinal epithelial cells: impact on β-catenin nuclear localization and phosphorylation at Ser ⁵⁵² . American Journal of Physiology - Cell Physiology, 2016, 310, C542-C557.	4.6	16
23	PDX1 associated therapy in translational medicine. Annals of Translational Medicine, 2016, 4, 214-214.	1.7	15
24	Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1. American Journal of Physiology - Cell Physiology, 2015, 309, C639-C649.	4.6	31
25	Intracellular Ca 2+ oscillations generated via the extracellular Ca 2+ -sensing receptor (CaSR) in response to extracellular Ca 2+ or l -phenylalanine: Impact of the highly conservative mutation Ser170Thr. Biochemical and Biophysical Research Communications, 2015, 467, 1-6.	2.1	4
26	Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2. Molecular Cancer Therapeutics, 2015, 14, 1014-1023.	4.1	81
27	Protein kinase D1 mediates class IIa histone deacetylase phosphorylation and nuclear extrusion in intestinal epithelial cells: role in mitogenic signaling. American Journal of Physiology - Cell Physiology, 2014, 306, C961-C971.	4.6	31
28	Mechanistic target of rapamycin (mTOR): a point of convergence in the action of insulin/IGF-1 and G protein-coupled receptor agonists in pancreatic cancer cells. Frontiers in Physiology, 2014, 5, 357.	2.8	51
29	Suppression of Feedback Loops Mediated by PI3K/mTOR Induces Multiple Overactivation of Compensatory Pathways: An Unintended Consequence Leading to Drug Resistance. Molecular Cancer Therapeutics, 2014, 13, 2477-2488.	4.1	224
30	Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract. PLoS ONE, 2014, 9, e107732.	2.5	53
31	Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells. PLoS ONE, 2014, 9, e114573.	2.5	61
32	Saline stress modulates mirâ€27a, mirâ€103 and mir135 in 3T3â€PKDâ€1 cells (802.15). FASEB Journal, 2014, 28 802.15.	' 0.5	0
33	Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK. Biochemical and Biophysical Research Communications, 2013, 430, 352-357.	2.1	97
34	Metformin Inhibits the Growth of Human Pancreatic Cancer Xenografts. Pancreas, 2013, 42, 781-785.	1.1	75
35	High-Fat, High-Calorie Diet Promotes Early Pancreatic Neoplasia in the Conditional KrasG12D Mouse Model. Cancer Prevention Research, 2013, 6, 1064-1073.	1.5	127
36	Different Patterns of Akt and ERK Feedback Activation in Response to Rapamycin, Active-Site mTOR Inhibitors and Metformin in Pancreatic Cancer Cells. PLoS ONE, 2013, 8, e57289.	2.5	118

#	Article	IF	CITATIONS
37	PKD1 Mediates Negative Feedback of PI3K/Akt Activation in Response to G Protein-Coupled Receptors. PLoS ONE, 2013, 8, e73149.	2.5	26
38	HLA class I-mediated stress fiber formation requires ERK1/2 activation in the absence of an increase in intracellular Ca ²⁺ in human aortic endothelial cells. American Journal of Physiology - Cell Physiology, 2012, 303, C872-C882.	4.6	32
39	Differential PKC-dependent and -independent PKD activation by G protein α subunits of the Gq family: Selective stimulation of PKD Ser748 autophosphorylation by Gαq. Cellular Signalling, 2012, 24, 914-921.	3.6	23
40	Protein Kinase D Signaling: Multiple Biological Functions in Health and Disease. Physiology, 2011, 26, 23-33.	3.1	193
41	Protein kinase D1 promotes anchorageâ€independent growth, invasion, and angiogenesis by human pancreatic cancer cells. Journal of Cellular Physiology, 2011, 226, 1074-1085.	4.1	50
42	Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANCâ€1 cells. Journal of Cellular Physiology, 2010, 223, 309-316.	4.1	37
43	Crosstalk between Insulin/Insulin-like Growth Factor-1 Receptors and G Protein-Coupled Receptor Signaling Systems: A Novel Target for the Antidiabetic Drug Metformin in Pancreatic Cancer. Clinical Cancer Research, 2010, 16, 2505-2511.	7.0	217
44	HLA Class I Molecules Partner with Integrin β ₄ to Stimulate Endothelial Cell Proliferation and Migration. Science Signaling, 2010, 3, ra85.	3.6	99
45	CID755673 enhances mitogenic signaling by phorbol esters, bombesin and EGF through a protein kinase D-independent pathway. Biochemical and Biophysical Research Communications, 2010, 391, 63-68.	2.1	36
46	Crosstalk between insulin receptor and G protein-coupled receptor signaling systems leads to Ca2+ oscillations in pancreatic cancer PANC-1 cells. Biochemical and Biophysical Research Communications, 2010, 401, 154-158.	2.1	20
47	Protein Kinase D Mediates Mitogenic Signaling by Gq-coupled Receptors through Protein Kinase C-independent Regulation of Activation Loop Ser744 and Ser748 Phosphorylation. Journal of Biological Chemistry, 2009, 284, 13434-13445.	3.4	61
48	Metformin Disrupts Crosstalk between G Protein–Coupled Receptor and Insulin Receptor Signaling Systems and Inhibits Pancreatic Cancer Growth. Cancer Research, 2009, 69, 6539-6545.	0.9	293
49	Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells. Biochemical and Biophysical Research Communications, 2009, 387, 521-524.	2.1	16
50	PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. Journal of Cellular Biochemistry, 2008, 103, 648-662.	2.6	68
51	MHC class I and integrin ligation induce ERK activation via an mTORC2-dependent pathway. Biochemical and Biophysical Research Communications, 2008, 369, 781-787.	2.1	39
52	Insulin Potentiates Ca2+Signaling and Phosphatidylinositol 4,5-Bisphosphate Hydrolysis Induced by GqProtein-Coupled Receptor Agonists through an mTOR-Dependent Pathway. Endocrinology, 2007, 148, 3246-3257.	2.8	51
53	RNA Interference Elucidates the Role of Focal Adhesion Kinase in HLA Class I-Mediated Focal Adhesion Complex Formation and Proliferation in Human Endothelial Cells. Journal of Immunology, 2007, 178, 7911-7922.	0.8	54
54	Taste receptor signaling in the mammalian gut. Current Opinion in Pharmacology, 2007, 7, 557-562.	3.5	176

#	Article	IF	CITATIONS
55	FAK phosphorylation at Ser-843 inhibits Tyr-397 phosphorylation, cell spreading and migration. Journal of Cellular Physiology, 2007, 210, 436-444.	4.1	43
56	Protein kinase D2 potentiates MEK/ERK/RSK signaling, c-Fos accumulation and DNA synthesis induced by bombesin in Swiss 3T3 cells. Journal of Cellular Physiology, 2007, 211, 781-790.	4.1	40
57	Mitogenic signaling pathways induced by G proteinâ€coupled receptors. Journal of Cellular Physiology, 2007, 213, 589-602.	4.1	420
58	Protein kinase Cα mediates feedback inhibition of EGF receptor transactivation induced by Gq-coupled receptor agonists. Cellular Signalling, 2007, 19, 1348-1357.	3.6	40
59	Activation of protein kinase D3 by signaling through Rac and the α subunits of the heterotrimeric G proteins G12 and G13. Cellular Signalling, 2006, 18, 1051-1062.	3.6	28
60	RNA interference reveals a differential role of FAK and Pyk2 in cell migration, leading edge formation and increase in focal adhesions induced by LPA in intestinal epithelial cells. Journal of Cellular Physiology, 2006, 207, 816-828.	4.1	30
61	Colocalization of the α-subunit of gustducin with PYY and GLP-1 in L cells of human colon. American Journal of Physiology - Renal Physiology, 2006, 291, G792-G802.	3.4	233
62	Taste Receptors in the Gastrointestinal Tract. I. Bitter taste receptors and α-gustducin in the mammalian gut. American Journal of Physiology - Renal Physiology, 2006, 291, G171-G177.	3.4	197
63	Neurotensin and EGF induce synergistic stimulation of DNA synthesis by increasing the duration of ERK signaling in ductal pancreatic cancer cells. Journal of Cellular Physiology, 2005, 202, 880-890.	4.1	54
64	Protein Kinase D Signaling. Journal of Biological Chemistry, 2005, 280, 13205-13208.	3.4	403
65	Protein kinase D3 activation and phosphorylation by signaling through $G\hat{I}\pm q$. Biochemical and Biophysical Research Communications, 2005, 335, 270-276.	2.1	11
66	PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Serâ€910: Dissociation from Tyrâ€397 phosphorylation and requirement for ERK activation. Journal of Cellular Physiology, 2004, 200, 213-222.	4.1	69
67	Dissociation of focal adhesion kinase and paxillin tyrosine phosphorylation induced by bombesin and lysophosphatidic acid from epidermal growth factor receptor transactivation in Swiss 3T3 cells. Journal of Cellular Physiology, 2003, 194, 314-324.	4.1	18
68	Vasopressinâ€induced intracellular redistribution of protein kinase D in intestinal epithelial cells. Journal of Cellular Physiology, 2003, 196, 483-492.	4.1	24
69	Uncoupling of protein kinase D from suppression of EGF-dependent c-Jun phosphorylation in cancer cells. Biochemical and Biophysical Research Communications, 2003, 302, 800-804.	2.1	15
70	Intracellular redistribution of protein kinase D2 in response to G-protein-coupled receptor agonists. Biochemical and Biophysical Research Communications, 2003, 302, 817-824.	2.1	41
71	Neurotensin stimulates protein kinase C-dependent mitogenic signaling in human pancreatic carcinoma cell line PANC-1. Cancer Research, 2003, 63, 2379-87.	0.9	72
72	Ligation of HLA Class I Molecules on Endothelial Cells Induces Phosphorylation of Src, Paxillin, and Focal Adhesion Kinase in an Actin-Dependent Manner. Journal of Immunology, 2002, 168, 5415-5423.	0.8	96

#	Article	IF	CITATIONS
73	Neuropeptides as growth factors for normal and cancerous cells. Trends in Endocrinology and Metabolism, 2002, 13, 128-134.	7.1	97
74	Gastrointestinal peptide signalling in health and disease. The European Journal of Surgery Supplement: = Acta Chirurgica Supplement, 2002, , 23-38.	0.2	15
75	CCK2 (CCKB/gastrin) receptor mediates rapid protein kinase D (PKD) activation through a protein kinase C-dependent pathway. FEBS Letters, 2001, 489, 101-106.	2.8	22
76	EGF receptor function is required in late G ₁ for cell cycle progression induced by bombesin and bradykinin. American Journal of Physiology - Cell Physiology, 2001, 281, C886-C898.	4.6	48
77	PKD in intestinal epithelial cells: rapid activation by phorbol esters, LPA, and angiotensin through PKC. American Journal of Physiology - Cell Physiology, 2001, 280, C929-C942.	4.6	80
78	G protein-coupled receptor signaling in human ductal pancreatic cancer cells: Neurotensin responsiveness and mitogenic stimulation. Journal of Cellular Physiology, 2001, 186, 53-64.	4.1	76
79	CCKB/gastrin receptor mediates synergistic stimulation of DNA synthesis and cyclin D1, D3, and E expression in Swiss 3T3 cells. Journal of Cellular Physiology, 2001, 189, 291-305.	4.1	31
80	Calyculin-A induces focal adhesion assembly and tyrosine phosphorylation of p125Fak, p130Cas, and paxillin in Swiss 3T3 cells. Journal of Cellular Physiology, 2001, 188, 106-119.	4.1	33
81	Gastrin, CCK, Signaling, and Cancer. Annual Review of Physiology, 2001, 63, 49-76.	13.1	204
82	Tyrosine phosphorylation of p125fak, p130cas, and paxillin does not require extracellular signal-regulated kinase activation in swiss 3T3 cells stimulated by bombesin or platelet-derived growth factor. Journal of Cellular Physiology, 2000, 183, 208-220.	4.1	15
83	Phosphorylation-dependent protein kinase Dactivation. Electrophoresis, 1999, 20, 382-390.	2.4	60
84	Protein kinase D activation by deletion of its cysteine-rich motifs. FEBS Letters, 1999, 454, 53-56.	2.8	44
85	Dynamic re-distribution of protein kinase D (PKD) as revealed by a GFP-PKD fusion protein: dissociation from PKD activation. FEBS Letters, 1999, 457, 515-521.	2.8	66
86	Signal transduction pathways in the mitogenic response to G protein-coupled neuropeptide receptor agonists. Journal of Cellular Physiology, 1998, 177, 507-517.	4.1	147
87	Dissimilar phorbol ester binding properties of the individual cysteine-rich motifs of protein kinase D. FEBS Letters, 1998, 437, 19-23.	2.8	57
88	Phosphorylation-dependent protein kinase Dactivation. , 0, .		2