List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6145766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry of Atmospheric Brown Carbon. Chemical Reviews, 2015, 115, 4335-4382.	23.0	1,121
2	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
3	Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst, The, 2010, 135, 2233.	1.7	404
4	Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. Atmospheric Environment, 2004, 38, 6253-6261.	1.9	295
5	Reactions at Interfaces As a Source of Sulfate Formation in Sea-Salt Particles. Science, 2003, 301, 340-344.	6.0	254
6	The viscosity of atmospherically relevant organic particles. Nature Communications, 2018, 9, 956.	5.8	252
7	Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon. Environmental Science & Technology, 2014, 48, 10217-10226.	4.6	250
8	Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. Environmental Science & Technology, 2016, 50, 11815-11824.	4.6	237
9	Indirect and Semi-direct Aerosol Campaign. Bulletin of the American Meteorological Society, 2011, 92, 183-201.	1.7	228
10	Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids. Journal of Geophysical Research, 2012, 117, .	3.3	224
11	Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Environmental Science & Technology, 2009, 43, 3764-3771.	4.6	219
12	Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environmental Science & Technology, 2017, 51, 11561-11570.	4.6	215
13	Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign. Atmospheric Chemistry and Physics, 2010, 10, 7325-7340.	1.9	210
14	Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Physical Chemistry Chemical Physics, 2015, 17, 23312-23325.	1.3	210
15	Micro-FTIR study of soot chemical composition—evidence of aliphatic hydrocarbons on nascent soot surfaces. Physical Chemistry Chemical Physics, 2010, 12, 5206.	1.3	205
16	Direct observation of completely processed calcium carbonate dust particles. Faraday Discussions, 2005, 130, 453.	1.6	198
17	Formation of nitrogen―and sulfurâ€containing lightâ€absorbing compounds accelerated by evaporation of water from secondary organic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	189
18	Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical. Atmospheric Chemistry and Physics, 2014, 14, 13801-13816.	1.9	187

#	Article	IF	CITATIONS
19	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmospheric Chemistry and Physics, 2010, 10, 5315-5341.	1.9	182
20	Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study. Journal of Geophysical Research, 2005, 110, .	3.3	173
21	High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. Atmospheric Environment, 2010, 44, 1032-1042.	1.9	167
22	Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 6931-6944.	1.9	167
23	High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Physical Chemistry Chemical Physics, 2008, 10, 1009-1022.	1.3	166
24	Analysis of individual environmental particles using modern methods of electron microscopy and X-ray microanalysis. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 260-274.	0.8	165
25	High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols. Analytical Chemistry, 2010, 82, 2048-2058.	3.2	160
26	Hydrophilic properties of aged soot. Geophysical Research Letters, 2005, 32, .	1.5	151
27	Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and ICP-MS study. Journal of Geophysical Research, 2005, 110, .	3.3	151
28	Optical properties and aging of light-absorbing secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 12815-12827.	1.9	150
29	Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate. Environmental Science & Technology, 2015, 49, 14257-14266.	4.6	149
30	Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization. Analytical Chemistry, 2018, 90, 12493-12502.	3.2	148
31	Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols. Journal of Aerosol Science, 2004, 35, 869-887.	1.8	147
32	Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Physical Chemistry Chemical Physics, 2011, 13, 3612.	1.3	147
33	Characterization of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City. Environmental Science & Technology, 2008, 42, 7091-7097.	4.6	143
34	Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol. Environmental Science & Technology, 2016, 50, 2477-2486.	4.6	143
35	Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures. International Journal of Chemical Kinetics, 2000, 32, 589-614.	1.0	141
36	Characterization and acidâ€mobilization study of ironâ€containing mineral dust source materials. Journal of Geophysical Research, 2008, 113, .	3.3	139

#	Article	IF	CITATIONS
37	Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry. Environmental Science & Technology, 2014, 48, 10993-11001.	4.6	138
38	Coal Fly Ash as a Source of Iron in Atmospheric Dust. Environmental Science & Technology, 2012, 46, 2112-2120.	4.6	129
39	The transformation of solid atmospheric particles into liquid droplets through heterogeneous chemistry: Laboratory insights into the processing of calcium containing mineral dust aerosol in the troposphere. Geophysical Research Letters, 2003, 30, .	1.5	125
40	Excitation–Emission Spectra and Fluorescence Quantum Yields for Fresh and Aged Biogenic Secondary Organic Aerosols. Environmental Science & Technology, 2013, 47, 5763-5770.	4.6	119
41	Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmospheric Chemistry and Physics, 2018, 18, 6331-6351.	1.9	116
42	Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 1105-1129.	1.9	115
43	Hygroscopic Behavior of Substrate-Deposited Particles Studied by micro-FT-IR Spectroscopy and Complementary Methods of Particle Analysis. Analytical Chemistry, 2008, 80, 633-642.	3.2	111
44	Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity. CheM, 2017, 2, 655-667.	5.8	111
45	Molecular Characterization of Organic Aerosols Using Nanospray-Desorption/Electrospray Ionization-Mass Spectrometry. Analytical Chemistry, 2010, 82, 7979-7986.	3.2	110
46	Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Physical Chemistry Chemical Physics, 2011, 13, 12199.	1.3	110
47	Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Physical Chemistry Chemical Physics, 2015, 17, 17914-17926.	1.3	108
48	Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis of <i>α</i> â€pinene. Geophysical Research Letters, 2007, 34, .	1.5	104
49	Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis. Analytical Chemistry, 2003, 75, 5170-5179.	3.2	102
50	Nitrogen-Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene. Environmental Science & Technology, 2011, 45, 6908-6918.	4.6	100
51	Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Physical Chemistry Chemical Physics, 2009, 11, 7931.	1.3	99
52	Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge. Analytical Chemistry, 2010, 82, 7906-7914.	3.2	98
53	Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia. Physical Chemistry Chemical Physics, 2014, 16, 10629-10642.	1.3	98
54	The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry. Environmental Science & Technology, 2008, 42, 7341-7346.	4.6	96

#	Article	IF	CITATIONS
55	Broadband optical properties of biomassâ€burning aerosol and identification of brown carbon chromophores. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5441-5456.	1.2	96
56	Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO ₃ Radical Reactions. Environmental Science & Technology, 2020, 54, 1395-1405.	4.6	96
57	Automated Single-Particle SEM/EDX Analysis of Submicrometer Particles down to 0.1 μm. Analytical Chemistry, 2001, 73, 1023-1029.	3.2	95
58	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.	1.9	94
59	The dependence of ice microphysics on aerosol concentration in arctic mixedâ€phase stratus clouds during ISDAC and Mâ€PACE. Journal of Geophysical Research, 2012, 117, .	3.3	94
60	Molecular Selectivity of Brown Carbon Chromophores. Environmental Science & Technology, 2014, 48, 12047-12055.	4.6	94
61	Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation. Atmospheric Chemistry and Physics, 2016, 16, 4511-4527.	1.9	92
62	Higher-Order Mass Defect Analysis for Mass Spectra of Complex Organic Mixtures. Analytical Chemistry, 2011, 83, 4924-4929.	3.2	91
63	Quantitative Time-Resolved Monitoring of Nitrate Formation in Sea Salt Particles Using a CCSEM/EDX Single Particle Analysis. Environmental Science & Technology, 2002, 36, 4948-4955.	4.6	89
64	Chemical speciation of sulfur in marine cloud droplets and particles: Analysis of individual particles from the marine boundary layer over the California current. Journal of Geophysical Research, 2008, 113, .	3.3	89
65	Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Faraday Discussions, 2013, 165, 473.	1.6	89
66	Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids. Environmental Science & amp; Technology, 2014, 48, 2234-2241.	4.6	88
67	Mass Spectrometry Analysis in Atmospheric Chemistry. Analytical Chemistry, 2018, 90, 166-189.	3.2	87
68	Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol. Environmental Science & Technology, 2018, 52, 1191-1199.	4.6	85
69	Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophysical Research Letters, 2010, 37, .	1.5	84
70	Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environmental Chemistry, 2012, 9, 163.	0.7	84
71	Liquid–Liquid Phase Separation in Aerosol Particles: Imaging at the Nanometer Scale. Environmental Science & Technology, 2015, 49, 4995-5002.	4.6	83
72	Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging. Atmospheric Chemistry and Physics, 2019, 19, 139-163.	1.9	81

ALEXANDER LASKIN

#	Article	IF	CITATIONS
73	Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. Physical Chemistry Chemical Physics, 2016, 18, 8785-8793.	1.3	76
74	Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol. Environmental Science & amp; Technology, 2017, 51, 119-127.	4.6	74
75	Kinetics of Heterogeneous Reaction of CaCO ₃ Particles with Gaseous HNO ₃ over a Wide Range of Humidity. Journal of Physical Chemistry A, 2008, 112, 1561-1571.	1.1	73
76	Evidence of aliphatics in nascent soot particles in premixed ethylene flames. Proceedings of the Combustion Institute, 2011, 33, 533-540.	2.4	73
77	Reactivity of Liquid and Semisolid Secondary Organic Carbon with Chloride and Nitrate in Atmospheric Aerosols. Journal of Physical Chemistry A, 2015, 119, 4498-4508.	1.1	73
78	On initiation reactions of acetylene oxidation in shock tubes. Chemical Physics Letters, 1999, 303, 43-49.	1.2	71
79	Airborne soil organic particles generated byÂprecipitation. Nature Geoscience, 2016, 9, 433-437.	5.4	71
80	Molecular Characterization of Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Analytical Chemistry, 2009, 81, 1512-1521.	3.2	70
81	Kinetic Study of Heterogeneous Reaction of Deliquesced NaCl Particles with Gaseous HNO3Using Particle-on-Substrate Stagnation Flow Reactor Approach. Journal of Physical Chemistry A, 2007, 111, 10026-10043.	1.1	69
82	Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmospheric Chemistry and Physics, 2018, 18, 2461-2480.	1.9	69
83	Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO ₃ radical chemistry, and N ₂ O ₅ heterogeneous hydrolysis. Journal of Geophysical Research, 2010, 115.	3.3	67
84	Aerosol Emissions from Great Lakes Harmful Algal Blooms. Environmental Science & Technology, 2018, 52, 397-405.	4.6	66
85	Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame. Physical Chemistry Chemical Physics, 2014, 16, 25862-25875.	1.3	65
86	Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry. Analytical Chemistry, 2012, 84, 1517-1525.	3.2	64
87	Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene. Atmospheric Chemistry and Physics, 2018, 18, 1643-1652.	1.9	64
88	Correlations between optical, chemical and physical properties of biomass burn aerosols. Geophysical Research Letters, 2007, 34, .	1.5	63
89	High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols. Journal of Physical Chemistry A, 2015, 119, 2594-2606.	1.1	63
90	Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study. Atmospheric Environment, 2013, 68, 265-272.	1.9	61

#	Article	IF	CITATIONS
91	Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,365.	1.2	61
92	A New Approach to Determining Gas-Particle Reaction Probabilities and Application to the Heterogeneous Reaction of Deliquesced Sodium Chloride Particles with Gas-Phase Hydroxyl Radicals. Journal of Physical Chemistry A, 2006, 110, 10619-10627.	1.1	60
93	Spectroscopic Evidence of Ketoâ^'Enol Tautomerism in Deliquesced Malonic Acid Particles. Journal of Physical Chemistry A, 2011, 115, 4373-4380.	1.1	59
94	Iron speciation and mixing in single aerosol particles from the Asian continental outflow. Journal of Geophysical Research, 2012, 117, .	3.3	59
95	Aerosolized ZnO Nanoparticles Induce Toxicity in Alveolar Type II Epithelial Cells at the Air-Liquid Interface. Toxicological Sciences, 2012, 125, 450-461.	1.4	58
96	Reactions between water-soluble organic acids and nitrates in atmospheric aerosols: Recycling of nitric acid and formation of organic salts. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3335-3351.	1.2	58
97	Chemical Composition and Molecular-Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning. Environmental Science & Technology, 2021, 55, 2511-2521.	4.6	58
98	Spectro-microscopic measurements of carbonaceous aerosol aging in Central California. Atmospheric Chemistry and Physics, 2013, 13, 10445-10459.	1.9	56
99	Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO ₃ ^{â^} aerosol during the 2013 Southern Oxidant and Aerosol Study. Atmospheric Chemistry and Physics, 2015, 15, 10669-10685.	1.9	56
100	Inland Sea Spray Aerosol Transport and Incomplete Chloride Depletion: Varying Degrees of Reactive Processing Observed during SOAS. Environmental Science & Technology, 2017, 51, 9533-9542.	4.6	56
101	Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic. Atmospheric Chemistry and Physics, 2018, 18, 3937-3949.	1.9	56
102	High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water-Soluble Organic Aerosols Collected with a Particle into Liquid Sampler. Analytical Chemistry, 2010, 82, 8010-8016.	3.2	55
103	Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling. Environmental Science & Technology, 2015, 49, 8523-8530.	4.6	55
104	Direct observation of ice nucleation events on individual atmospheric particles. Physical Chemistry Chemical Physics, 2016, 18, 29721-29731.	1.3	55
105	Photochemistry of Products of the Aqueous Reaction of Methylglyoxal with Ammonium Sulfate. ACS Earth and Space Chemistry, 2017, 1, 522-532.	1.2	55
106	The diverse chemical mixing state of aerosol particles in the southeastern United States. Atmospheric Chemistry and Physics, 2018, 18, 12595-12612.	1.9	55
107	Time-Resolved Aerosol Collector for CCSEM/EDX Single-Particle Analysis. Aerosol Science and Technology, 2003, 37, 246-260.	1.5	53
108	Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6564-6579.	1.2	53

#	Article	IF	CITATIONS
109	Physical properties of ambient and laboratoryâ€generated secondary organic aerosol. Geophysical Research Letters, 2014, 41, 4347-4353.	1.5	53
110	Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray lonization Mass Spectrometry. Analytical Chemistry, 2012, 84, 7179-7187.	3.2	52
111	Heterogeneous ice nucleation and water uptake by fieldâ€collected atmospheric particles below 273 K. Journal of Geophysical Research, 2012, 117, .	3.3	52
112	Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.	1.9	52
113	Progress in the Analysis of Complex Atmospheric Particles. Annual Review of Analytical Chemistry, 2016, 9, 117-143.	2.8	51
114	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. Journal of Physical Chemistry A, 2017, 121, 1298-1309.	1.1	51
115	Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9591-9605.	1.2	49
116	Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water. Atmospheric Chemistry and Physics, 2017, 17, 15167-15180.	1.9	49
117	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolâ~†. Environmental Pollution, 2021, 268, 115906.	3.7	49
118	Isomerization and Decomposition of Indole. Experimental Results and Kinetic Modelingâ€. Journal of Physical Chemistry A, 1997, 101, 7787-7801.	1.1	48
119	Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014. Atmospheric Chemistry and Physics, 2019, 19, 1027-1039.	1.9	48
120	lce nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation. Geophysical Research Letters, 2016, 43, 3580-3588.	1.5	47
121	Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia. Environmental Science & Technology, 2016, 50, 12179-12186.	4.6	46
122	On unimolecular decomposition of phenyl radical. Proceedings of the Combustion Institute, 2000, 28, 1545-1555.	2.4	45
123	Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles. Aerosol Science and Technology, 2010, 44, 830-846.	1.5	44
124	Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol. Environmental Science & Technology, 2011, 45, 1257-1263.	4.6	44
125	Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols. Environmental Science & Technology, 2012, 46, 8315-8324.	4.6	44
126	Morphology and mixing of black carbon particles collected in central California during the CARES field study. Atmospheric Chemistry and Physics, 2016, 16, 14515-14525.	1.9	44

#	Article	IF	CITATIONS
127	Characterization of Light-Absorbing Oligomers from Reactions of Phenolic Compounds and Fe(III). ACS Earth and Space Chemistry, 2017, 1, 637-646.	1.2	43
128	New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. International Reviews in Physical Chemistry, 2013, 32, 128-170.	0.9	41
129	Molecular characterization of S―and Nâ€containing organic constituents in ambient aerosols by negative ion mode highâ€resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,706.	1.2	41
130	Observation of Road Salt Aerosol Driving Inland Wintertime Atmospheric Chlorine Chemistry. ACS Central Science, 2020, 6, 684-694.	5.3	41
131	Hygroscopic Properties of CH ₃ SO ₃ Na, CH ₃ SO ₃ NH ₄ , (CH ₃ SO ₃) ₂ Mg, and (CH ₃ SO ₃ 3) ₂ Ca Particles Studied by micro-FTIR Spectroscopy. lournal of Physical Chemistry A, 2009, 113, 1531-1538.	1.1	39
132	Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Physical Chemistry Chemical Physics, 2012, 14, 9702.	1.3	38
133	Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in UtqiaÄįvik, Alaska. Atmospheric Chemistry and Physics, 2017, 17, 10879-10892.	1.9	37
134	Particle-Phase Diffusion Modulates Partitioning of Semivolatile Organic Compounds to Aged Secondary Organic Aerosol. Environmental Science & Technology, 2020, 54, 2595-2605.	4.6	37
135	Thermal decomposition of indene. Experimental results and kinetic modeling. Proceedings of the Combustion Institute, 1998, 27, 313-320.	0.3	36
136	Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry (AMS). Environmental Science & Technology, 2008, 42, 6619-6624.	4.6	36
137	Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland Particulate Matter. Environmental Science and Technology Letters, 2018, 5, 405-412.	3.9	36
138	Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase—Chemical Evolution and Light Absorption Properties of AqSOA. Environmental Science & Technology, 2021, 55, 5199-5211.	4.6	36
139	Morphology of diesel soot residuals from supercooled water droplets and ice crystals: implications for optical properties. Environmental Research Letters, 2015, 10, 114010.	2.2	35
140	Optical Properties of Secondary Organic Aerosol Produced by Nitrate Radical Oxidation of Biogenic Volatile Organic Compounds. Environmental Science & Technology, 2021, 55, 2878-2889.	4.6	35
141	Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents. Atmospheric Chemistry and Physics, 2010, 10, 6179-6194.	1.9	33
142	Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). Bulletin of the American Meteorological Society, 2022, 103, E619-E641.	1.7	33
143	Chemical Imaging of Atmospheric Particles. Accounts of Chemical Research, 2019, 52, 3419-3431.	7.6	32
144	Humidity-Dependent Viscosity of Secondary Organic Aerosol from Ozonolysis of β-Caryophyllene: Measurements, Predictions, and Implications. ACS Earth and Space Chemistry, 2021, 5, 305-318.	1.2	32

#	Article	IF	CITATIONS
145	Fungal spores as a source of sodium salt particles in the Amazon basin. Nature Communications, 2018, 9, 4793.	5.8	31
146	Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1343-1360.	1.2	30
147	Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry. Environmental Science & amp; Technology, 2015, 49, 13304-13313.	4.6	30
148	Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15. Atmosphere, 2017, 8, 173.	1.0	30
149	Feasibility of the Detection of Trace Elements in Particulate Matter Using Online High-Resolution Aerosol Mass Spectrometry. Aerosol Science and Technology, 2012, 46, 1187-1200.	1.5	28
150	Laboratory Insights into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown Carbon Aerosols. Environmental Science & Technology, 2020, 54, 11827-11837.	4.6	28
151	Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. Atmospheric Chemistry and Physics, 2019, 19, 12515-12529.	1.9	27
152	Thermal Decomposition of Quinoline and Isoquinoline. The Role of 1-Indene Imine Radical. Journal of Physical Chemistry A, 1998, 102, 928-946.	1.1	26
153	Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles. Physical Chemistry Chemical Physics, 2011, 13, 11846.	1.3	25
154	Rapid measurement of emissions from military aircraft turbine engines by downstream extractive sampling of aircraft on the ground: Results for C-130 and F-15 aircraft. Atmospheric Environment, 2009, 43, 2612-2622.	1.9	24
155	An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry. Analytical Methods, 2013, 5, 72-80.	1.3	24
156	An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor. Review of Scientific Instruments, 2013, 84, 073708.	0.6	24
157	Molecular Composition and the Optical Properties of Brown Carbon Generated by the Ethane Flame. ACS Earth and Space Chemistry, 2020, 4, 1090-1103.	1.2	24
158	TOF-SIMS analysis of sea salt particles: imaging and depth profiling in the discovery of an unrecognized mechanism for pH buffering. Applied Surface Science, 2004, 231-232, 520-523.	3.1	23
159	Molecular Analysis of Secondary Brown Carbon Produced from the Photooxidation of Naphthalene. Environmental Science & Technology, 2022, 56, 3340-3353.	4.6	22
160	Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry. Analytical Methods, 2014, 6, 2444-2451.	1.3	21
161	Secondary organic aerosol from atmospheric photooxidationÂofÂindole. Atmospheric Chemistry and Physics, 2017, 17, 11605-11621.	1.9	21
162	Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.	1.2	20

ALEXANDER LASKIN

#	Article	IF	CITATIONS
163	Optical Properties of Secondary Organic Aerosol Produced by Photooxidation of Naphthalene under NOx Condition. Environmental Science & Technology, 2022, 56, 4816-4827.	4.6	20
164	The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt. Reyes National Seashore. Atmospheric Environment, 2011, 45, 2559-2568.	1.9	19
165	Probing molecular associations of fieldâ€collected and laboratoryâ€generated SOA with nanoâ€DESI highâ€resolution mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1042-1051.	1.2	19
166	Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Strategic Environmental Research and Development Program. Journal of the Air and Waste Management Association, 2008, 58, 787-796.	0.9	18
167	Chemical imaging analysis of environmental particles using the focused ion beam/scanning electron microscopy technique: microanalysis insights into atmospheric chemistry of fly ash. Analyst, The, 2013, 138, 451-460.	1.7	18
168	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene in the Presence of Hydrogen Peroxide or Inorganic Salts. ACS Earth and Space Chemistry, 2019, 3, 2736-2746.	1.2	18
169	Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in Situ Imaging. Environmental Science & Technology, 2016, 50, 5172-5180.	4.6	17
170	A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol. Environmental Science & Technology, 2017, 51, 11048-11056.	4.6	17
171	Effect of sea breeze circulation on aerosol mixing state and radiative properties in a desert setting. Atmospheric Chemistry and Physics, 2017, 17, 11331-11353.	1.9	17
172	Molecular Characterization of Water-Soluble Brown Carbon Chromophores in Snowpack from Northern Xinjiang, China. Environmental Science & amp; Technology, 2022, 56, 4173-4186.	4.6	17
173	Regional Differences of Chemical Composition and Optical Properties of Aerosols in the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031226.	1.2	16
174	Chemical Imaging of Fine Mode Atmospheric Particles Collected from a Research Aircraft over Agricultural Fields. ACS Earth and Space Chemistry, 2020, 4, 2171-2184.	1.2	16
175	The production and hydrolysis of organic nitrates from OH radical oxidation of <i>β</i> -ocimene. Atmospheric Chemistry and Physics, 2021, 21, 129-145.	1.9	16
176	Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China. Atmospheric Chemistry and Physics, 2021, 21, 8531-8555.	1.9	15
177	Molecular-Level Study of the Photo-Oxidation of Aqueous-Phase Guaiacyl Acetone in the Presence of ³ C*: Formation of Brown Carbon Products. ACS Earth and Space Chemistry, 2021, 5, 1983-1996.	1.2	15
178	Optical Properties of Airborne Soil Organic Particles. ACS Earth and Space Chemistry, 2017, 1, 511-521.	1.2	14
179	Molecular Characterization of Atmospheric Brown Carbon. ACS Symposium Series, 2018, , 261-274.	0.5	14
180	Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: variations with season and synoptic condition. Atmospheric Chemistry and Physics, 2021, 21, 11079-11098.	1.9	14

#	Article	IF	CITATIONS
181	Viscosity and liquid–liquid phase separation in healthy and stressed plant SOA. Environmental Science Atmospheres, 2021, 1, 140-153.	0.9	14
182	Isomerization of 2-Methyl-4,5-dihydrofuran. Studies with a Single-Pulse Shock Tube. The Journal of Physical Chemistry, 1994, 98, 2341-2345.	2.9	12
183	Optical properties and composition of viscous organic particles found in the Southern Great Plains. Atmospheric Chemistry and Physics, 2020, 20, 11593-11606.	1.9	12
184	Secondary organic aerosols produced from photochemical oxidation of secondarily evaporated biomass burning organic gases: Chemical composition, toxicity, optical properties, and climate effect. Environment International, 2021, 157, 106801.	4.8	11
185	Solid organic-coated ammonium sulfate particles at high relative humidity in the summertime Arctic atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104496119.	3.3	11
186	Quantitative analysis of polycyclic aromatic hydrocarbons using highâ€performance liquid chromatographyâ€photodiode arrayâ€highâ€resolution mass spectrometric detection platform coupled to electrospray and atmospheric pressure photoionization sources. Journal of Mass Spectrometry, 2022, 57, e4804.	0.7	10
187	Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA). Atmospheric Chemistry and Physics, 2021, 21, 18123-18146.	1.9	10
188	Micro-spectroscopic and freezing characterization of ice-nucleating particles collected in the marine boundary layer in the eastern North Atlantic. Atmospheric Chemistry and Physics, 2022, 22, 5377-5398.	1.9	10
189	Atmospheric Brown Carbon on the Tibetan Plateau: Regional Differences in Chemical Composition and Light Absorption Properties. Environmental Science and Technology Letters, 2022, 9, 219-225.	3.9	9
190	Thermal Isomerization of Azulene. Single-Pulse Shock Tube Investigation. Israel Journal of Chemistry, 1996, 36, 257-261.	1.0	8
191	COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols. Environmental Science & amp; Technology, 2012, 46, 6048-6055.	4.6	8
192	Emerging investigator series: influence of marine emissions and atmospheric processing on individual particle composition of summertime Arctic aerosol over the Bering Strait and Chukchi Sea. Environmental Sciences: Processes and Impacts, 2020, 22, 1201-1213.	1.7	8
193	Photochemical reactions on aerosols at West Antarctica: A molecular case-study of nitrate formation among sea salt aerosols. Science of the Total Environment, 2021, 758, 143586.	3.9	8
194	Radical-Initiated Brown Carbon Formation in Sunlit Carbonyl–Amine–Ammonium Sulfate Mixtures and Aqueous Aerosol Particles. ACS Earth and Space Chemistry, 2022, 6, 228-238.	1.2	8
195	On deposition efficiency of point-to-plate electrostatic precipitator. Journal of Aerosol Science, 2002, 33, 405-409.	1.8	7
196	Heating-Induced Transformations of Atmospheric Particles: Environmental Transmission Electron Microscopy Study. Analytical Chemistry, 2018, 90, 9761-9768.	3.2	7
197	Reactive Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols. ACS Symposium Series, 2018, , 127-147.	0.5	6
198	Environmental Transmission Electron Microscopy of Individual Atmospheric Particles from the North Atlantic. Microscopy and Microanalysis, 2018, 24, 396-397.	0.2	5

#	Article	IF	CITATIONS
199	Microanalysis of Primary Biological Particles from Model Grass over Its Life Cycle. ACS Earth and Space Chemistry, 2020, 4, 1895-1905.	1.2	5
200	Production of major reaction products in the initial steps of the thermal decomposition of naphthalene. Experimental shock-tube results and computer simulation. Proceedings of the Combustion Institute, 2015, 35, 299-307.	2.4	4
201	Electron Beam Analysis and Microscopy of Individual Particles. , 2011, , 463-491.		4
202	Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures. , 0, .		1
203	Chemical composition and morphological analysis of atmospheric particles from an intensive bonfire burning festival. Environmental Science Atmospheres, 2022, 2, 616-633.	0.9	1
204	Field and laboratory studies of reactions between atmospheric water soluble organic acids and inorganic particles. , 2013, , .		0
205	Editors' Perspective on Multiphase Chemistry in the Atmosphere. ACS Symposium Series, 2018, , 1-6.	0.5	0
206	An Atmospheric Aerosol Short Course for Early Career Scientists. Bulletin of the American Meteorological Society, 2020, 101, E1562-E1567.	1.7	0