Daniel Blankschtein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6145567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the pH-Dependent Behavior of Graphene Oxide Aqueous Solutions: A Comparative Experimental and Molecular Dynamics Simulation Study. Langmuir, 2012, 28, 235-241.	3.5	517
2	mRNA vaccine delivery using lipid nanoparticles. Therapeutic Delivery, 2016, 7, 319-334.	2.2	414
3	Ultrasound-mediated transdermal drug delivery: Mechanisms, scope, and emerging trends. Journal of Controlled Release, 2011, 152, 330-348.	9.9	325
4	Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature, 2015, 518, 520-524.	27.8	325
5	Molecularâ€ŧhermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants. Journal of Chemical Physics, 1990, 92, 3710-3724.	3.0	322
6	Breakdown in the Wetting Transparency of Graphene. Physical Review Letters, 2012, 109, 176101.	7.8	313
7	Transdermal drug delivery using low-frequency sonophoresis. Pharmaceutical Research, 1996, 13, 411-420.	3.5	305
8	A Mechanistic Study of Ultrasonicallyâ€Enhanced Transdermal Drug Delivery. Journal of Pharmaceutical Sciences, 1995, 84, 697-706.	3.3	304
9	Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nature Nanotechnology, 2013, 8, 959-968.	31.5	282
10	Predicting Micellar Solution Properties of Binary Surfactant Mixtures. Langmuir, 1998, 14, 1618-1636.	3.5	276
11	Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions. Journal of Chemical Physics, 1986, 85, 7268-7288.	3.0	269
12	Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation. Journal of the American Chemical Society, 2010, 132, 14638-14648.	13.7	260
13	Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opinion on Drug Delivery, 2014, 11, 393-407.	5.0	260
14	Wetting translucency of graphene. Nature Materials, 2013, 12, 866-869.	27.5	241
15	Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective. Journal of Physical Chemistry C, 2019, 123, 21309-21326.	3.1	234
16	Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism. Nano Letters, 2016, 16, 1161-1172.	9.1	213
17	Measurement and Prediction of Ionic/Nonionic Mixed Micelle Formation and Growth. Langmuir, 1998, 14, 7166-7182.	3.5	210
18	Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. ACS Nano, 2016, 10, 4330-4344.	14.6	190

#	Article	IF	CITATIONS
19	Liquid-Phase Exfoliation of Phosphorene: Design Rules from Molecular Dynamics Simulations. ACS Nano, 2015, 9, 8255-8268.	14.6	160
20	Molecular Insights into the Surface Morphology, Layering Structure, and Aggregation Kinetics of Surfactant-Stabilized Graphene Dispersions. Journal of the American Chemical Society, 2011, 133, 12810-12823.	13.7	140
21	An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharmaceutical Research, 2002, 19, 1160-1169.	3.5	138
22	Role of the Bile Salt Surfactant Sodium Cholate in Enhancing the Aqueous Dispersion Stability of Single-Walled Carbon Nanotubes: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2010, 114, 15616-15625.	2.6	138
23	Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opinion on Drug Delivery, 2010, 7, 1415-1432.	5.0	135
24	Separation of proteins and viruses using two-phase aqueous micellar systems. Biomedical Applications, 1998, 711, 127-138.	1.7	128
25	Theoretical Description of Transdermal Transport of Hydrophilic Permeants: Application to Lowâ€Frequency Sonophoresis. Journal of Pharmaceutical Sciences, 2001, 90, 545-568.	3.3	124
26	Effect of Counterion Binding on Micellar Solution Behavior:  2. Prediction of Micellar Solution Properties of Ionic Surfactantâ^'Electrolyte Systems. Langmuir, 2003, 19, 9946-9961.	3.5	123
27	Synergistic Effects of Chemical Enhancers and Therapeutic Ultrasound on Transdermal Drug Delivery. Journal of Pharmaceutical Sciences, 1996, 85, 670-679.	3.3	119
28	Reconfigurable and responsive droplet-based compound micro-lenses. Nature Communications, 2017, 8, 14673.	12.8	119
29	Salt effects on intramicellar interactions and micellization of nonionic surfactants in aqueous solutions. Langmuir, 1994, 10, 109-121.	3.5	116
30	Prediction of Equilibrium Surface Tension and Surface Adsorption of Aqueous Surfactant Mixtures Containing Ionic Surfactants. Langmuir, 1999, 15, 8832-8848.	3.5	109
31	Synergistic Effect of Lowâ€Frequency Ultrasound and Sodium Lauryl Sulfate on Transdermal Transport. Journal of Pharmaceutical Sciences, 2000, 89, 892-900.	3.3	109
32	Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. ACS Nano, 2017, 11, 7974-7987.	14.6	103
33	Theory of phase separation in micellar solutions. Physical Review Letters, 1985, 54, 955-955.	7.8	97
34	Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials, 2011, 32, 933-941.	11.4	97
35	Molecular-Thermodynamic Modeling of Mixed Cationic/Anionic Vesicles. Langmuir, 1996, 12, 3802-3818.	3.5	96
36	Ultrasound-mediated gastrointestinal drug delivery. Science Translational Medicine, 2015, 7, 310ra168.	12.4	95

#	Article	IF	CITATIONS
37	In Vitro Visualization and Quantification of Oleic Acid Induced Changes in Transdermal Transport Using Two-Photon Fluorescence Microscopy. Journal of Investigative Dermatology, 2001, 117, 16-25.	0.7	92
38	Theoretical and Experimental Investigation of the Equilibrium Oilâ^'Water Interfacial Tensions of Solutions Containing Surfactant Mixtures. Langmuir, 2002, 18, 365-376.	3.5	82
39	Quantitative Modeling of MoS ₂ –Solvent Interfaces: Predicting Contact Angles and Exfoliation Performance using Molecular Dynamics. Journal of Physical Chemistry C, 2017, 121, 9022-9031.	3.1	81
40	Visualization of Oleic Acid-induced Transdermal Diffusion Pathways Using Two-photon Fluorescence Microscopy. Journal of Investigative Dermatology, 2003, 120, 448-455.	0.7	75
41	Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin. Journal of Controlled Release, 2010, 145, 26-32.	9.9	74
42	Protein partitioning in two-phase aqueous polymer systems. 1. Novel physical pictures and a scaling thermodynamic formulation. Macromolecules, 1991, 24, 4334-4348.	4.8	73
43	Prediction of Equilibrium Surface Tension and Surface Adsorption of Aqueous Surfactant Mixtures Containing Zwitterionic Surfactants. Langmuir, 2000, 16, 7640-7654.	3.5	71
44	Statistical-Thermodynamic Framework to Model Nonionic Micellar Solutions. Langmuir, 1997, 13, 5258-5275.	3.5	66
45	Application of integral equation theories to predict the structure, thermodynamics, and phase behavior of water. Journal of Chemical Physics, 1995, 102, 5427-5437.	3.0	64
46	Dominance of Dispersion Interactions and Entropy over Electrostatics in Determining the Wettability and Friction of Two-Dimensional MoS ₂ Surfaces. ACS Nano, 2016, 10, 9145-9155.	14.6	63
47	Fundamental Investigation of Protein Partitioning in Two-Phase Aqueous Mixed (Nonionic/Ionic) Micellar Systems. Langmuir, 2002, 18, 3047-3057.	3.5	62
48	Ultrasound-enhanced transdermal delivery: recent advances and future challenges. Therapeutic Delivery, 2014, 5, 843-857.	2.2	60
49	Addressing the isomer cataloguing problem for nanopores in two-dimensional materials. Nature Materials, 2019, 18, 129-135.	27.5	57
50	Complementary Use of Simulations and Molecular-Thermodynamic Theory to Model Micellization. Langmuir, 2006, 22, 1500-1513.	3.5	56
51	Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes. Nano Letters, 2018, 18, 5057-5069.	9.1	56
52	Transport Pathways and Enhancement Mechanisms Within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate. Journal of Pharmaceutical Sciences, 2011, 100, 512-529.	3.3	55
53	Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications. Journal of Physical Chemistry Letters, 2018, 9, 1584-1591.	4.6	55
54	A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis — Insight into the observed synergism. Journal of Controlled Release, 2012, 158, 250-260.	9.9	54

#	Article	IF	CITATIONS
55	Effects of Multisolute Steric Interactions on Membrane Partition Coefficients. Journal of Colloid and Interface Science, 2000, 226, 112-122.	9.4	53
56	Dual-Channel Two-Photon Microscopy Study of Transdermal Transport in Skin Treated with Low-Frequency Ultrasound and a Chemical Enhancer. Journal of Investigative Dermatology, 2007, 127, 2832-2846.	0.7	53
57	Rapid skin permeabilization by the simultaneous application of dual-frequency, high-intensity ultrasound. Journal of Controlled Release, 2012, 163, 154-160.	9.9	50
58	Understanding the Stabilization of Single-Walled Carbon Nanotubes and Graphene in Ionic Surfactant Aqueous Solutions: Large-Scale Coarse-Grained Molecular Dynamics Simulation-Assisted DLVO Theory. Journal of Physical Chemistry C, 2015, 119, 1047-1060.	3.1	50
59	Challenging the surfactant monomer skin penetration model: penetration of sodium dodecyl sulfate micelles into the epidermis. Journal of Cosmetic Science, 2003, 54, 29-46.	0.1	49
60	Effects of Lowâ€Frequency Ultrasound on the Transdermal Permeation of Mannitol: Comparative Studies with In Vivo and In Vitro Skin. Journal of Pharmaceutical Sciences, 2002, 91, 1776-1794.	3.3	48
61	Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs. Journal of Controlled Release, 2015, 202, 93-100.	9.9	48
62	Theory of Surface Forces in Multivalent Electrolytes. Langmuir, 2019, 35, 11550-11565.	3.5	47
63	Single compartment drug delivery. Journal of Controlled Release, 2014, 190, 157-171.	9.9	46
64	Insights on the Role of Many-Body Polarization Effects in the Wetting of Graphitic Surfaces by Water. Journal of Physical Chemistry C, 2017, 121, 28166-28179.	3.1	46
65	Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes. ACS Nano, 2019, 13, 11809-11824.	14.6	46
66	Theory of thermodynamic properties and phase separation of micellar solutions with lower consolute points. Journal of Chemical Physics, 1986, 84, 4558-4562.	3.0	44
67	Glucose-6-phosphate dehydrogenase partitioning in two-phase aqueous mixed (nonionic/cationic) micellar systems. Biotechnology and Bioengineering, 2003, 82, 445-456.	3.3	44
68	Quantifying the Hydrophobic Effect. 1. A Computer Simulationâ^'Molecular-Thermodynamic Model for the Self-Assembly of Hydrophobic and Amphiphilic Solutes in Aqueous Solution. Journal of Physical Chemistry B, 2007, 111, 1025-1044.	2.6	42
69	Experimental demonstration of the existence of highly permeable localized transport regions in lowâ€frequency sonophoresis. Journal of Pharmaceutical Sciences, 2004, 93, 2733-2745.	3.3	41
70	Prediction of steadyâ€state skin permeabilities of polar and nonpolar permeants across excised pig skin based on measurements of transient diffusion: Characterization of hydration effects on the skin porous pathway. Journal of Pharmaceutical Sciences, 2002, 91, 1891-1907.	3.3	40
71	Fabrication, Pressure Testing, and Nanopore Formation of Single-Layer Graphene Membranes. Journal of Physical Chemistry C, 2017, 121, 14312-14321.	3.1	39
72	Schizophrenic Diblock-Copolymer-Functionalized Nanoparticles as Temperature-Responsive Pickering Emulsifiers. Langmuir, 2017, 33, 13326-13331.	3.5	39

#	Article	IF	CITATIONS
73	Liquids with Lower Wettability Can Exhibit Higher Friction on Hexagonal Boron Nitride: The Intriguing Role of Solid–Liquid Electrostatic Interactions. Nano Letters, 2019, 19, 1539-1551.	9.1	39
74	Separating lysozyme from bacteriophage P22 in two-phase aqueous micellar systems. Biotechnology and Bioengineering, 2002, 80, 233-236.	3.3	38
75	Combined Molecular Dynamics Simulation–Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions. Langmuir, 2017, 33, 8319-8329.	3.5	38
76	Protein partitioning in two-phase aqueous polymer systems. 2. On the free energy of mixing globular colloids and flexible polymers. Macromolecules, 1992, 25, 3917-3931.	4.8	37
77	Role of Adsorbed Surfactant in the Reaction of Aryl Diazonium Salts with Single-Walled Carbon Nanotubes. Langmuir, 2012, 28, 1309-1321.	3.5	37
78	Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling. Advances in Colloid and Interface Science, 2017, 244, 36-53.	14.7	37
79	Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2. Effect of entrained micelle-poor domains. Biotechnology and Bioengineering, 2002, 78, 203-216.	3.3	36
80	Affinity-enhanced protein partitioning in decyl ?-D-glucopyranoside two-phase aqueous micellar systems. Biotechnology and Bioengineering, 2005, 89, 381-392.	3.3	36
81	Molecular-Thermodynamic Prediction of Critical Micelle Concentrations of Commercial Surfactants. Langmuir, 2001, 17, 5801-5812.	3.5	35
82	Destabilization of Oil-in-Water Emulsions Stabilized by Non-ionic Surfactants: Effect of Particle Hydrophilicity. Langmuir, 2016, 32, 10694-10698.	3.5	33
83	Evaluation of the porosity, the tortuosity, and the hindrance factor for the transdermal delivery of hydrophilic permeants in the context of the aqueous pore pathway hypothesis using dualâ€radiolabeled permeability experiments. Journal of Pharmaceutical Sciences, 2007, 96, 3263-3282.	3.3	32
84	Multi-scale approach for modeling stability, aggregation, and network formation of nanoparticles suspended in aqueous solutions. Nanoscale, 2019, 11, 3979-3992.	5.6	32
85	Application of integral equation theories to predict the structure of diatomic fluids. Journal of Chemical Physics, 1995, 102, 4203-4216.	3.0	31
86	Development of User-Friendly Computer Programs To Predict Solution Properties of Single and Mixed Surfactant Systems. Industrial & Engineering Chemistry Research, 1995, 34, 4150-4160.	3.7	31
87	Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 1. Role of attractive interactions between viruses and micelles. Biotechnology and Bioengineering, 2002, 78, 190-202.	3.3	30
88	Affinity-tagged green fluorescent protein (GFP) extraction from a clarifiedE. coli cell lysate using a two-phase aqueous micellar system. Biotechnology and Bioengineering, 2006, 93, 998-1004.	3.3	29
89	Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nanotubes in Aqueous Surfactant Solutions. Journal of the American Chemical Society, 2012, 134, 8194-8204.	13.7	29
90	Application of the Aqueous Porous Pathway Model to Quantify the Effect of Sodium Lauryl Sulfate on Ultrasound-Induced Skin Structural Perturbation. Journal of Pharmaceutical Sciences, 2011, 100, 1387-1397.	3.3	28

#	Article	IF	CITATIONS
91	Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions. ACS Nano, 2021, 15, 1727-1740.	14.6	28
92	Direct Chemical Vapor Deposition Synthesis of Porous Single‣ayer Graphene Membranes with High Gas Permeances and Selectivities. Advanced Materials, 2021, 33, e2104308.	21.0	28
93	Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances. Advanced Materials, 2022, 34, e2201472.	21.0	28
94	Heterogeneity in Skin Treated with Low-Frequency Ultrasound. Journal of Pharmaceutical Sciences, 2008, 97, 4119-4128.	3.3	26
95	Evaluation of Hydrophilic Permeant Transport Parameters in the Localized and Non-Localized Transport Regions of Skin Treated Simultaneously With Low-Frequency Ultrasound and Sodium Lauryl Sulfate. Journal of Pharmaceutical Sciences, 2008, 97, 906-918.	3.3	25
96	Uncovering a Universal Molecular Mechanism of Salt Ion Adsorption at Solid/Water Interfaces. Langmuir, 2021, 37, 722-733.	3.5	25
97	The role of sodium dodecyl sulfate (SDS) micelles in inducing skin barrier perturbation in the presence of glycerol. Journal of Cosmetic Science, 2007, 58, 109-33.	0.1	25
98	Thermodynamic prediction of active ingredient loading in polymeric microparticles. Journal of Controlled Release, 1999, 60, 77-100.	9.9	23
99	A Liquid-State Theory Approach to Modeling Solute Partitioning in Phase-Separated Solutions. Industrial & Engineering Chemistry Research, 1996, 35, 3032-3043.	3.7	22
100	2D Equation-of-State Model for Corona Phase Molecular Recognition on Single-Walled Carbon Nanotube and Graphene Surfaces. Langmuir, 2015, 31, 628-636.	3.5	22
101	The effect of salt identity and concentration on liquid–liquid phase separation in aqueous micellar solutions of C8â€lecithin. Journal of Chemical Physics, 1990, 92, 1956-1962.	3.0	21
102	Understanding Miltefosine–Membrane Interactions Using Molecular Dynamics Simulations. Langmuir, 2015, 31, 4503-4512.	3.5	20
103	Diameter Dependence of Water Filling in Lithographically Segmented Isolated Carbon Nanotubes. ACS Nano, 2021, 15, 2778-2790.	14.6	20
104	Experimental and Molecular Dynamics Investigation into the Amphiphilic Nature of Sulforhodamine B. Journal of Physical Chemistry B, 2011, 115, 1394-1402.	2.6	19
105	Fluorescent penetration enhancers for transdermal applications. Journal of Controlled Release, 2012, 158, 85-92.	9.9	18
106	Molecular—Thermodynamic Theory of Mixed Micellar Solutions. ACS Symposium Series, 1992, , 96-113.	0.5	17
107	Short-time behavior of mixed diffusion-barrier controlled adsorption. Journal of Colloid and Interface Science, 2006, 296, 442-457.	9.4	15
108	New methodology to determine the rate-limiting adsorption kinetics mechanism from experimental dynamic surface tension data. Journal of Colloid and Interface Science, 2006, 302, 1-19.	9.4	15

#	Article	IF	CITATIONS
109	Visualization and quantification of skin barrier perturbation induced by surfactant-humectant systems using two-photon fluorescence microscopy. Journal of Cosmetic Science, 2008, 59, 263-89.	0.1	13
110	Proper integral equations for interactionâ€site fluids: Exact freeâ€energy expressions. Journal of Chemical Physics, 1994, 100, 3002-3012.	3.0	12
111	Ion Adsorption at Solid/Water Interfaces: Establishing the Coupled Nature of Ion–Solid and Water–Solid Interactions. Journal of Physical Chemistry C, 2021, 125, 2666-2679.	3.1	12
112	The role of sodium dodecyl sulfate (SDS) micelles in inducing skin barrier perturbation in the presence of glycerol. International Journal of Cosmetic Science, 2008, 30, 73-73.	2.6	11
113	Application of Computer Simulation Free-Energy Methods to Compute the Free Energy of Micellization as a Function of Micelle Composition. 1. Theory. Journal of Physical Chemistry B, 2008, 112, 1634-1640.	2.6	11
114	New Methodology to Determine Equilibrium Surfactant Adsorption Properties from Experimental Dynamic Surface Tension Data. Langmuir, 2009, 25, 6191-6202.	3.5	11
115	Computer Simulation–Molecular-Thermodynamic Framework to Predict the Micellization Behavior of Mixtures of Surfactants: Application to Binary Surfactant Mixtures. Journal of Physical Chemistry B, 2013, 117, 6430-6442.	2.6	11
116	Possible Existence of Convective Currents in Surfactant Bulk Solution in Experimental Pendant-Bubble Dynamic Surface Tension Measurements. Langmuir, 2009, 25, 1434-1444.	3.5	9
117	Understanding selective molecular recognition in integrated carbon nanotube–polymer sensors by simulating physical analyte binding on carbon nanotube–polymer scaffolds. Soft Matter, 2014, 10, 5991-6004.	2.7	9
118	Protein partitioning driven by excluded-volume interactions in an aqueous nonionic micellar?gel system. Biotechnology and Bioengineering, 2004, 87, 695-703.	3.3	8
119	Why is sodium cocoyl isethionate (SCI) mild to the skin barrier? - An in vitro investigation based on the relative sizes of the SCI micelles and the skin aqueous pores. Journal of Cosmetic Science, 2007, 58, 229-44.	0.1	7
120	Analytical solution of the proper integral equations for interaction site fluids. Journal of Chemical Physics, 1995, 103, 1229-1231.	3.0	5
121	Integral equations for interaction site fluids: The influence of connectivity constraints and auxiliary sites. Journal of Chemical Physics, 1995, 102, 5460-5470.	3.0	5
122	Ranking of aqueous surfactant-humectant systems based on an analysis of in vitro and in vivo skin barrier perturbation measurements. Journal of Cosmetic Science, 2007, 58, 599-620.	0.1	5
123	Analytical solutions of the proper integral equations for interaction site fluids: Molecules composed of hardâ€sphere interaction sites. Journal of Chemical Physics, 1995, 103, 7086-7097.	3.0	4
124	CO ₂ -Reactive Ionic Liquid Surfactants for the Control of Colloidal Morphology. Langmuir, 2017, 33, 7633-7641.	3.5	4
125	Molecular-Thermodynamic Approach to Predict Micellar Solution Properties. Materials Research Society Symposia Proceedings, 1989, 177, 129.	0.1	3
126	Molecular Rotors for Universal Quantitation of Nanoscale Hydrophobic Interfaces in Microplate Format. Nano Letters, 2018, 18, 618-628.	9.1	3

#	Article	IF	CITATIONS
127	Why is sodium cocoyl isethionate (SCI) mild to the skin barrier?Anin vitroinvestigation based on the relative sizes of the SCI micelles and the skin aqueous pores. International Journal of Cosmetic Science, 2008, 30, 310-310.	2.6	2
128	How "transparent―is graphene?. Membrane Technology, 2013, 2013, 7.	0.1	0
129	Combined Use of Ultrasound and Other Physical Methods of Skin Penetration Enhancement. , 2017, , 369-377.		0
130	Challenging the surfactant monomer skin penetration model: penetration of sodium dodecyl sulfate (SDS) micelles into the epidermis. Journal of Cosmetic Science, 2002, 53, 302-3.	0.1	0