Mitsuru Akashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6145259/publications.pdf

Version: 2024-02-01

28274 56724 10,256 320 55 83 citations h-index g-index papers 330 330 330 9074 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CXCL12 promotes CCR7 ligand–mediated breast cancer cell invasion and migration toward lymphatic vessels. Cancer Science, 2022, 113, 1338-1351.	3.9	13
2	Construction of vascularized oral mucosa equivalents using a layer-by-layer cell coating technology. Nihon Koku Geka Gakkai Zasshi, 2022, 68, 53-68.	0.0	0
3	Fabrication of highly stretchable hydrogel based on crosslinking between alendronates functionalized poly-Î ³ -glutamate and calcium cations. Materials Today Bio, 2022, 14, 100225.	5.5	1
4	Bioprinting 3D human cardiac tissue chips using the pin type printer †microscopic painting device†and analysis for cardiotoxicity. Biomedical Materials (Bristol), 2021, 16, 025017.	3.3	7
5	The Cell Line-Dependent Diversity in Initial Morphological Dynamics of Pancreatic Cancer Cell Peritoneal Metastasis Visualized by an Artificial Human Peritoneal Model. Journal of Surgical Research, 2021, 261, 351-360.	1.6	1
6	Observation of a tight junction structure generated in LbLâ€3D skin reconstructed by layerâ€byâ€layer cell coating technique. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 798-803.	2.7	5
7	Three-dimensional idiopathic pulmonary fibrosis model using a layer-by-layer cell coating technique. Tissue Engineering - Part C: Methods, 2021, 27, 378-390.	2.1	2
8	Composite Materials by Building Block Chemistry Using Weak Interaction. Bulletin of the Chemical Society of Japan, 2021, 94, 1903-1921.	3.2	35
9	Effect of 3D-Fibroblast Dermis Constructed by Layer-by-Layer Cell Coating Technique on Tight Junction Formation and Function in Full-Thickness Skin Equivalent. ACS Biomaterials Science and Engineering, 2021, 7, 3835-3844.	5.2	4
10	Mechanical activities of self-beating cardiomyocyte aggregates under mechanical compression. Scientific Reports, 2021, 11, 15159.	3.3	6
11	Thiolactone-Functional Pullulan for <i>In Situ</i> Forming Biogels. Biomacromolecules, 2021, 22, 4262-4273.	5.4	5
12	Cardiotoxicity assessment using 3D vascularized cardiac tissue consisting of human iPSC-derived cardiomyocytes and fibroblasts. Molecular Therapy - Methods and Clinical Development, 2021, 22, 338-349.	4.1	12
13	Supersensitive Layer-by-Layer 3D Cardiac Tissues Fabricated on a Collagen Culture Vessel Using Human-Induced Pluripotent Stem Cells. Tissue Engineering - Part C: Methods, 2020, 26, 493-502.	2.1	0
14	Construction of 3D cardiac tissue with synchronous powerful beating using human cardiomyocytes from human iPS cells prepared by a convenient differentiation method. Journal of Bioscience and Bioengineering, 2020, 129, 749-755.	2.2	18
15	Noninvasive optical coherence tomography imaging of threeâ€dimensional cardiac tissues derived from human induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1384-1393.	2.7	1
16	Formulation Stability of Amphiphilic Poly(\hat{I}^3 -Glutamic Acid) Nanoparticle and Evaluation of Cardiotoxicity of NPs With Human iPSC-Derived 3D-Cardiomyocyte Tissues. Journal of Pharmaceutical Sciences, 2020, 109, 2969-2974.	3.3	0
17	Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Scientific Reports, 2020, 10, 5484.	3.3	48
18	In vitro placenta barrier model using primary human trophoblasts, underlying connective tissue and vascular endothelium. Biomaterials, 2019, 192, 140-148.	11.4	33

#	Article	IF	CITATIONS
19	Threeâ€dimensional bioprinting human cardiac tissue chips of using a painting needle method. Biotechnology and Bioengineering, 2019, 116, 3136-3142.	3.3	23
20	A Layer-by-Layer Single-Cell Coating Technique To Produce Injectable Beating Mini Heart Tissues via Microfluidics. Biomacromolecules, 2019, 20, 3746-3754.	5.4	42
21	Micro Vacuum Chuck and Tensile Test System for Bio-Mechanical Evaluation of 3D Tissue Constructed of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPS-CM). Micromachines, 2019, 10, 487.	2.9	11
22	A novel strategy to engineer pre-vascularized 3-dimensional skin substitutes to achieve efficient, functional engraftment. Scientific Reports, 2019, 9, 7797.	3.3	54
23	Inhibitory effect of carbonyl reductase 1 against peritoneal progression of ovarian cancer: evaluation by ex vivo 3D-human peritoneal model. Molecular Biology Reports, 2019, 46, 4685-4697.	2.3	4
24	Construction of Vascularized Oral Mucosa Equivalents Using a Layer-by-Layer Cell Coating Technology. Tissue Engineering - Part C: Methods, 2019, 25, 262-275.	2.1	23
25	Dynamic Self-Assembly and Synthesis of Polylactide Bearing 5-Hydroxymethylfurfural Chain Ends. ACS Applied Polymer Materials, 2019, 1, 267-274.	4.4	9
26	Threeâ€dimensional cultured tissue constructs that imitate human living tissue organization for analysis of tumor cell invasion. Journal of Biomedical Materials Research - Part A, 2019, 107, 292-300.	4.0	7
27	Vascular Endothelial Growth Factor Incorporated Multilayer Film Induces Preangiogenesis in Endothelial Cells. ACS Biomaterials Science and Engineering, 2018, 4, 1833-1842.	5.2	8
28	Layer-by-layer cell coating technique using extracellular matrix facilitates rapid fabrication and function of pancreatic \hat{l}^2 -cell spheroids. Biomaterials, 2018, 160, 82-91.	11.4	58
29	Characterization and analytical development for amphiphilic poly(\hat{l}^3 -glutamic acid) as raw material of nanoparticle adjuvants. Journal of Pharmaceutical and Biomedical Analysis, 2018, 150, 460-468.	2.8	11
30	A novel comb-shaped polymethacrylate-based copolymers with immobilized 2,4-dihydroxybenzaldehyde for antifungal activity. Polymer Bulletin, 2018, 75, 1349-1363.	3.3	3
31	Development of <i>In Vitro</i> Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells. Tissue Engineering - Part C: Methods, 2018, 24, 56-67.	2.1	88
32	Development of Endothelial Cell Networks in 3D Tissues by Combination of Melt Electrospinning Writing with Cellâ€Accumulation Technology. Small, 2018, 14, 1701521.	10.0	38
33	InÂvitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials, 2018, 179, 144-155.	11.4	44
34	Development of analytical methods for evaluating the quality of dissociated and associated amphiphilic poly (\hat{I}^3 -glutamic acid) nanoparticles. Analytical and Bioanalytical Chemistry, 2018, 410, 4445-4457.	3.7	3
35	Effective Guest Inclusion by a 6â€ <i>O</i> â€Modified βâ€Cyclodextrin Dimer in Organic Solvents. ChemPlusChem, 2018, 83, 868-873.	2.8	8
36	Transplantation of three-dimensional artificial human vascular tissues fabricated using an extracellular matrix nanofilm-based cell-accumulation technique. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1303-1307.	2.7	17

#	Article	IF	CITATIONS
37	Development of a rapid in vitro tissue deadhesion system using the thermoresponsive sol-gel transition of hydroxybutyl chitosan. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 958-973.	3.5	13
38	Construction of three-dimensional vascularized functional human liver tissue using a layer-by-layer cell coating technique. Biomaterials, 2017, 133, 263-274.	11.4	73
39	Fabrication of Orientation-Controlled 3D Tissues Using a Layer-by-Layer Technique and 3D Printed a Thermoresponsive Gel Frame. Tissue Engineering - Part C: Methods, 2017, 23, 357-366.	2.1	25
40	Desmoplastic Reaction in 3Dâ€Pancreatic Cancer Tissues Suppresses Molecular Permeability. Advanced Healthcare Materials, 2017, 6, 1700057.	7.6	19
41	Stability of adhesive interfaces by stereocomplex formation of polylactides and hybridization with nanoparticles. Polymer Degradation and Stability, 2017, 141, 69-76.	5.8	7
42	Construction of Three-Dimensional Dermo–Epidermal Skin Equivalents Using Cell Coating Technology and Their Utilization as Alternative Skin for Permeation Studies and Skin Irritation Tests . Tissue Engineering - Part A, 2017, 23, 481-490.	3.1	36
43	Thermally resistant polylactide layer-by-layer film prepared using an inkjet approach. Polymer Journal, 2017, 49, 327-334.	2.7	8
44	In Vitro Design of Nanoparticles Using an Artificial 3D-Blood Vessel Wall Model for Atherosclerosis Treatment. ACS Symposium Series, 2017, , 195-225.	0.5	0
45	Construction of artificial human peritoneal tissue by cell-accumulation technique and its application for visualizing morphological dynamics of cancer peritoneal metastasis. Biochemical and Biophysical Research Communications, 2017, 494, 213-219.	2.1	16
46	Engraftment and morphological development of vascularized human iPS cell-derived 3D-cardiomyocyte tissue after xenotransplantation. Scientific Reports, 2017, 7, 13708.	3.3	26
47	Control of thermoresponsivity of biocompatible poly(trimethylene carbonate) with direct introduction of oligo(ethylene glycol) under various circumstances. Journal of Polymer Science Part A, 2017, 55, 3466-3474.	2.3	13
48	Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Scientific Reports, 2017, 7, 9079.	3.3	76
49	Construction and histological analysis of a 3D human arterial wall model containing vasa vasorum using a layerâ€byâ€layer technique. Journal of Biomedical Materials Research - Part A, 2017, 105, 814-823.	4.0	7
50	Highâ€Throughput Blood―and Lymphâ€Capillaries with Openâ€Ended Pores Which Allow the Transport of Drugs and Cells. Advanced Healthcare Materials, 2016, 5, 1969-1978.	7.6	18
51	Construction of Mouseâ€Embryonicâ€Cellâ€Derived 3D Pacemaker Tissues by Layerâ€byâ€Layer Nanofilm Coatin ChemNanoMat, 2016, 2, 466-471.	¹⁸ 2.8	O
52	Use of Threeâ€Dimensional Arterial Models To Predict the In Vivo Behavior of Nanoparticles for Drug Delivery. Angewandte Chemie - International Edition, 2016, 55, 4461-4466.	13.8	11
53	Use of Threeâ€Dimensional Arterial Models To Predict the In Vivo Behavior of Nanoparticles for Drug Delivery. Angewandte Chemie, 2016, 128, 4537-4542.	2.0	1
54	Construction and myogenic differentiation of 3D myoblast tissues fabricated by fibronectin-gelatin nanofilm coating. Biochemical and Biophysical Research Communications, 2016, 474, 515-521.	2.1	27

#	Article	IF	Citations
55	Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy. Langmuir, 2016, 32, 3803-3810.	3.5	19
56	Preparation of macroporous replica particles using stereocomplex of isotactic poly(methyl) Tj ETQq0 0 0 rgBT /Ov Engineering Aspects, 2016, 506, 338-343.	verlock 10 4.7) Tf 50 707 T O
57	Nanometerâ€sized extracellular matrix coating on polymerâ€based scaffold for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2016, 104, 94-103.	4.0	32
58	Nanofiber Formation by the Self-assembly of an Ampholyte Poly(amino acid). Chemistry Letters, 2016, 45, 220-222.	1.3	1
59	Preparation of glucose responsive polyelectrolyte capsules with shell crosslinking via the layer-by-layer technique and sustained release of insulin. Polymer Chemistry, 2016, 7, 6779-6788.	3.9	23
60	Force Estimation on the Contact of Poly(<scp> < scp>,<scp> < scp>-lactide) and Poly(<scp>,<scp>d< scp>,<scp>d< scp>,d< scp>-lactide) Surfaces Regarding Stereocomplex Formation. Langmuir, 2016, 32, 9501-9506.</scp></scp></scp></scp></scp>	3.5	9
61	Fabrication of Biobased Polyelectrolyte Capsules and Their Application for Glucose-Triggered Insulin Delivery. ACS Applied Materials & Delivery. ACS	8.0	57
62	Catechinâ€Modified Polylactide Stereocomplex at Chain End Improved Antibiobacterial Property. Macromolecular Bioscience, 2016, 16, 694-704.	4.1	19
63	Three-Dimensional Tissue Models Constructed by Cells with Nanometer- or Micrometer-Sized Films on the Surfaces. Chemical Record, 2016, 16, 783-796.	5.8	9
64	Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays. Acta Biomaterialia, 2016, 33, 110-121.	8.3	106
65	Control of vascular network location in millimeter-sized 3D-tissues by micrometer-sized collagen coated cells. Biochemical and Biophysical Research Communications, 2016, 472, 131-136.	2.1	6
66	Fabrication of rod-like nanocapsules based on polylactide and 3,4-dihydroxyphenylalanine for a drug delivery system. RSC Advances, 2015, 5, 103414-103420.	3.6	10
67	Fabrication of Cell–Hydroxyapatite Nanocrystal Composites Assisted with Layer-by-layer Nanometer-sized Extracellular Matrix Films on Individual Stem Cells. Chemistry Letters, 2015, 44, 1714-1716.	1.3	2
68	Study on Porous <i>it</i> -PMMA Thin Films With Well Recognizable Stereoregularity when Prepared by Layer-by-Layer Assembly. Kobunshi Ronbunshu, 2015, 72, 261-274.	0.2	2
69	Releasing property from surface polyion complex gel. Journal of Applied Polymer Science, 2015, 132, .	2.6	0
70	Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels. Beilstein Journal of Organic Chemistry, 2015, 11, 2355-2364.	2,2	17
71	Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability. International Journal of Molecular Sciences, 2015, 16, 14245-14258.	4.1	20
72	Adsorption capability of urethane-crosslinked heptakis(2,6-di-O-methyl)-Î ² -cyclodextrin polymers toward polychlorobiphenyls in nonpolar organic media. Polymer Journal, 2015, 47, 443-448.	2.7	11

#	Article	IF	CITATIONS
73	A novel substrate for testosterone: biodegradable and biocompatible oil gel. Polymer Journal, 2015, 47, 460-463.	2.7	6
74	Hydrogen-Bonded Multilayer Films Based on Poly($\langle i \rangle N \langle i \rangle$ -vinylamide) Derivatives and Tannic Acid. Langmuir, 2015, 31, 6863-6869.	3.5	49
75	Induction of Potent Adaptive Immunity by the Novel Polyion Complex Nanoparticles. Vaccine Journal, 2015, 22, 578-585.	3.1	5
76	3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells. Biochemical and Biophysical Research Communications, 2015, 457, 363-369.	2.1	17
77	Cell effects on the formation of collagen triple helix fibers inside collagen gels or on cell surfaces. Polymer Journal, 2015, 47, 391-399.	2.7	16
78	Cellâ€"Cell Crosslinking by Bioâ€Molecular Recognition of Heparinâ€Based Layerâ€byâ€Layer Nanofilms. Macromolecular Bioscience, 2015, 15, 312-317.	4.1	6
79	Dynamic Nanoâ€Interfaces Enable Harvesting of Functional 3Dâ€Engineered Tissues. Advanced Healthcare Materials, 2015, 4, 1164-1168.	7.6	10
80	Structural and Viscoelastic Properties of Layer-by-Layer Extracellular Matrix (ECM) Nanofilms and Their Interactions with Living Cells. ACS Biomaterials Science and Engineering, 2015, 1, 816-824.	5.2	10
81	Control of Cell–Cell Distance and Cell Densities in Millimeter-Sized 3D Tissues Constructed by Collagen Nanofiber Coating Techniques. ACS Biomaterials Science and Engineering, 2015, 1, 639-645.	5.2	13
82	Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. Journal of Biomedical Materials Research - Part A, 2015, 103, 3386-3396.	4.0	70
83	Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(\hat{I}^3 -glutamic acid). Bioconjugate Chemistry, 2015, 26, 890-898.	3.6	25
84	pH-dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in a metal-free environment. RSC Advances, 2015, 5, 82252-82258.	3.6	42
85	Stereocomplex Film Using Triblock Copolymers of Polylactide and Poly(ethylene glycol) Retain Paxlitaxel on Substrates by an Aqueous Inkjet System. Langmuir, 2015, 31, 10583-10589.	3.5	17
86	Interaction between living cells and polymeric particles: potential application of ionic liquid for evaluating the cellular uptake of biodegradable polymeric particles composed of poly(amino acid). Polymer Journal, 2015, 47, 631-638.	2.7	6
87	Thermally stable polylactides by stereocomplex formation and conjugation of both terminals with bio-based cinnamic acid derivatives. RSC Advances, 2015, 5, 91423-91430.	3.6	12
88	Surface polyion complex gel with poly(vinylphosphonic acid) and poly(<i>N</i> -vinylamide)s. Journal of Polymer Science Part A, 2015, 53, 562-566.	2.3	0
89	Three-dimensional human arterial wall models for in vitro permeability assessment of drug and nanocarriers. Biochemical and Biophysical Research Communications, 2015, 456, 392-397.	2.1	10
90	Construction of three-dimensional liver tissue models by cell accumulation technique and maintaining their metabolic functions for long-term culture without medium change. Journal of Biomedical Materials Research - Part A, 2015, 103, 1554-1564.	4.0	24

#	Article	IF	Citations
91	Ferulic acid-coupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers, 2015, 115, 744-751.	10.2	66
92	Effective Extraction of Radioactive Cesium from Various Pollutants with a Detergent Solution Including Mg ²⁺ and K ⁺ . Radiation Safety Management, 2015, 14, 15-17.	0.4	1
93	2C47 Fabrication of Small blood vessel using 3D Multilayer Assembly. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 427-428.	0.0	0
94	Preparation of microparticles composed of amphiphilic poly (\hat{l}^3 -glutamic acid) through hydrophobic interactions. Polymer Journal, 2014, 46, 184-188.	2.7	6
95	Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique. Microscopy (Oxford,) Tj ETQq1 10	0.7 8\$ 314	rg 8 0/Overlo
96	Microfluidic perfusion culture system for multilayer artery tissue models. Biomicrofluidics, 2014, 8, 064113.	2.4	16
97	Circulatory culture system for elastic fiber development of tissue-engineered blood vessels. , 2014, , .		0
98	Control of extracellular microenvironments using polymer/protein nanofilms for the development of three-dimensional human tissue chips. Polymer Journal, 2014, 46, 524-536.	2.7	19
99	Temperature effect on template polymerization of methacrylic acid using stereocomplex formation on quartz crystal microbalance substrates. Journal of Polymer Science Part A, 2014, 52, 3032-3036.	2.3	1
100	Creation of Superhydrophobic Electrospun Nonwovens Fabricated from Naturally Occurring Poly(Amino Acid) Derivatives. Advanced Functional Materials, 2014, 24, 6359-6364.	14.9	16
101	Synthesis and preparation of nanoparticles composed of amphiphilic poly (\hat{l}^3 -glutamic acid) with different hydrophobic side chains and their potential of membrane disruptive activity. Colloid and Polymer Science, 2014, 292, 2663-2671.	2.1	11
102	Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions. Experimental Neurology, 2014, 261, 386-395.	4.1	29
103	Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials, 2014, 35, 4739-4748.	11.4	84
104	Three-dimensional cell culture technique and pathophysiology. Advanced Drug Delivery Reviews, 2014, 74, 95-103.	13.7	86
105	The construction of cell-density controlled three-dimensional tissues by coating micrometer-sized collagen fiber matrices on single cell surfaces. RSC Advances, 2014, 4, 46141-46144.	3.6	17
106	Oil gels with a chemically cross-linked copolymer of a trimethylene carbonate derivative and <scp> </scp> -lactide: preparation and stereocomplex formation within gels. RSC Advances, 2014, 4, 33462-33465.	3.6	11
107	The hydrophobic effect of nanoparticles composed of amphiphilic poly(\hat{l}^3 -glutamic acid) on the degradability of the encapsulated proteins. Biomaterials Science, 2014, 2, 1419.	5.4	8
108	Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy. Biochemical and Biophysical Research Communications, 2014, 451, 107-111.	2.1	16

#	Article	IF	Citations
109	Tunable drug-loading capability of chitosan hydrogels with varied network architectures. Acta Biomaterialia, 2014, 10, 821-830.	8.3	53
110	Amphiphilic Poly(<i>N< i>â€vinyl acetamide) Gels Strengthened with Swelling Solvent. Macromolecular Chemistry and Physics, 2014, 215, 384-390.</i>	2.2	4
111	Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies. Atherosclerosis, 2014, 233, 590-600.	0.8	21
112	Studies on Synthesis, Characterization, and Functionalization of Poly(3,4-dihydroxy- <scp>l</scp> -phenylalanine). Chemistry Letters, 2014, 43, 959-961.	1.3	3
113	Sustainable Release of Paclitaxel from Biodegradable Poly(\hat{l}^3 -glutamic acid) Nanoparticles for Treatment of Atherosclerosis. Chemistry Letters, 2014, 43, 1767-1769.	1.3	5
114	Preparation of siRNA Carrier Based on Boronic Acid-functionalized Amphiphilic Poly(\hat{l}^3 -glutamic acid) Nanoparticles. Chemistry Letters, 2014, 43, 840-842.	1.3	2
115	Development of Extraction Technique for Radioactive Cesium in Polluted Soil /b>. Journal of Environmental Chemistry, 2014, 24, 119-124.	0.2	3
116	Transmission electron microscopic observations of the multilevel microstructure of crosslinked copolymers with methacrylates and siloxane macromers by a radically polymerizable tuning approach. Journal of Applied Polymer Science, 2013, 127, 3325-3332.	2.6	2
117	Effect of copolymerizing fluorineâ€bearing monomers on the relationship among internal structure, gas permeability, and transparency in copolymer networks composed of methacrylates and siloxane macromers. Journal of Applied Polymer Science, 2013, 127, 535-543.	2.6	9
118	Structural Analysis of Unimer Nanoparticles Composed of Hydrophobized Poly(amino acid)s. Macromolecules, 2013, 46, 6187-6194.	4.8	22
119	Threeâ€Dimensional Human Tissue Chips Fabricated by Rapid and Automatic Inkjet Cell Printing. Advanced Healthcare Materials, 2013, 2, 534-539.	7.6	156
120	Multilayered Blood Capillary Analogs in Biodegradable Hydrogels for In Vitro Drug Permeability Assays. Advanced Functional Materials, 2013, 23, 1736-1742.	14.9	51
121	Synthesis of a thermosensitive polycation by random copolymerization of N-vinylformamide and N-vinylbutyramide. Polymer Journal, 2013, 45, 971-978.	2.7	4
122	Fabrication of multilayer structured tubular tissue using water transfer printing. , 2013, , .		0
123	Uptake of biodegradable poly(\hat{l}^3 -glutamic acid) nanoparticles and antigen presentation by dendritic cells in vivo. Results in Immunology, 2013, 3, 1-9.	2.2	25
124	Survival and structural evaluations of three-dimensional tissues fabricated by the hierarchical cell manipulation technique. Acta Biomaterialia, 2013, 9, 4698-4706.	8.3	29
125	Biodistribution of vaccines comprised of hydrophobically-modified poly (\hat{I}^3 -glutamic acid) nanoparticles and antigen proteins using fluorescence imaging. Bioorganic and Medicinal Chemistry, 2013, 21, 6608-6615.	3.0	13
126	Preparation and characterization of nanoparticles formed through stereocomplexation between enantiomeric poly(\hat{l}^3 -glutamic acid)-graft-poly(lactide) copolymers. Polymer Journal, 2013, 45, 560-566.	2.7	17

#	Article	IF	Citations
127	Thermally Stabilized Poly(lactide)s Stereocomplex with Bio-Based Aromatic Groups at Both Initiating and Terminating Chain Ends. Macromolecules, 2013, 46, 5150-5156.	4.8	40
128	Poly(vinylalkanamide)s as Kinetic Hydrate Inhibitors: Comparison of Poly(<i>N</i> -vinylisobutyramide) with Poly(<i>N</i> -isopropylacrylamide). Energy & Ener	5.1	36
129	Effectiveness of Nanometer-Sized Extracellular Matrix Layer-by-Layer Assembled Films for a Cell Membrane Coating Protecting Cells from Physical Stress. Langmuir, 2013, 29, 7362-7368.	3.5	79
130	Inkjet Approaches Contribute to Facile Isotactic Poly(Methyl)/Syndiotactic Poly(Methyl Methacrylate) Stereocomplex Surface Preparation. Macromolecular Chemistry and Physics, 2013, 214, 1590-1595.	2.2	6
131	Tissue Engineering: Three-Dimensional Human Tissue Chips Fabricated by Rapid and Automatic Inkjet Cell Printing (Adv. Healthcare Mater. 4/2013). Advanced Healthcare Materials, 2013, 2, 533-533.	7.6	4
132	A study on template effects using irregular porous isotactic poly(methyl methacrylate) films constructed with syndiotactic rich poly(methacrylic acid) and isotactic poly(methyl methacrylate). Polymer Journal, 2013, 45, 898-903.	2.7	5
133	Safe Control of Construction–Deconstruction of High-density PEG Brushes on the Surface of Peptide Nanospheres by Thermally Induced Shrinkage of PEG–SS–PEG. Chemistry Letters, 2013, 42, 344-346.	1.3	3
134	Nanoparticle Fabrication with Biodegradable Block Copolymer Composed of Hydrophilic Poly(trimethylene carbonate) Derivative and Hydrophobic Polylactide. Chemistry Letters, 2013, 42, 74-76.	1.3	7
135	Efficient Removal and Recovery of Perfluorinated Compounds from Water by Surface-tethered β-Cyclodextrins on Polystyrene Particles. Chemistry Letters, 2013, 42, 392-394.	1.3	23
136	Stimuli-responsive Unimer Nanoparticles Composed of Poly(amino acid) Derivatives as Promising Protein-mimetic Drug Carriers. Chemistry Letters, 2013, 42, 1534-1536.	1.3	3
137	Biomedical Applications: Multilayered Blood Capillary Analogs in Biodegradable Hydrogels for In Vitro Drug Permeability Assays (Adv. Funct. Mater. 14/2013). Advanced Functional Materials, 2013, 23, 1730-1730.	14.9	0
138	The systematic study of the microstructure of crosslinked copolymers from siloxane macromonomers and methacrylates by changes in composition and components. Polymer Journal, 2012, 44, 301-305.	2.7	5
139	Control of Cellular Inflammation by Layer-by-layer Nanofilms through Different Driving Forces. Chemistry Letters, 2012, 41, 523-524.	1.3	10
140	Morphological and Histological Evaluations of 3D-Layered Blood Vessel Constructs Prepared by Hierarchical Cell Manipulation. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 63-79.	3.5	40
141	Structural Nanospace Feature and Substrate Contribution to Maintaining Stable Porosity of Polymer Chain in Layer-by-Layer Assembled Isotactic Poly(methyl methacrylate) Films. Macromolecules, 2012, 45, 7660-7663.	4.8	4
142	Controlled Release Using a Polymer Stereocomplex Capsule through the Selective Extraction and Incorporation of One Capsule Shell Component. Langmuir, 2012, 28, 15378-15384.	3.5	16
143	Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery. Biochemical and Biophysical Research Communications, 2012, 419, 32-37.	2.1	40
144	Effect of Degree of Branching on Properties of Photosensitive Nanoparticles as Drugâ€Delivery Carriers. Macromolecular Chemistry and Physics, 2012, 213, 2157-2164.	2.2	3

#	Article	IF	CITATIONS
145	Investigation on thermoresponsive behavior of biodegradable poly(γâ€glutamic) Tj ETQq1 1 0.784314 rgBT /Over 4823-4828.	rlock 10 Tf 2.3	f 50 747 Td (0
146	Radical polymerization of novel <i>N</i> â€substitutedâ€ <i>N</i> â€vinylformamide derivatives with bulky chiral substitutents. Journal of Polymer Science Part A, 2012, 50, 134-141.	2.3	3
147	Nanospace preparation by crosslinking helical <i>syndiotactic</i> a∈poly(methacrylic acid) in acetonitrile/water after stereocomplexation. Journal of Polymer Science Part A, 2012, 50, 1469-1476.	2.3	5
148	LbL Assemblies Using van der Waals or Affinity Interactions and Their Applications. , 2012, , 99-133.		2
149	A stereocomplex of poly(lactide)s with chain end modification: simultaneous resistances to melting and thermal decomposition. Chemical Communications, 2012, 48, 8478.	4.1	39
150	Layerâ€byâ€Layer Assembly Through Weak Interactions and Their Biomedical Applications. Advanced Materials, 2012, 24, 454-474.	21.0	155
151	7C12 3D-Cell Manipulation Using Nanofilms and Development of Engineered Tissue Models. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2012, 2012.24, _7C12-17C12-2	0.0	0
152	Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine. Advances in Polymer Science, 2011, , 31-64.	0.8	134
153	Polyelectrolyte multilayers-modified membrane filter for rapid immunoassay: protein condensation by centrifugal permeation. Polymer Journal, 2011, 43, 35-40.	2.7	8
154	Mechanism of high thermal stability of commercial polyesters and polyethers conjugated with bioâ€based caffeic acid. Journal of Polymer Science Part A, 2011, 49, 3152-3162.	2.3	17
155	Rapid Construction of Threeâ€Dimensional Multilayered Tissues with Endothelial Tube Networks by the Cellâ€Accumulation Technique. Advanced Materials, 2011, 23, 3506-3510.	21.0	241
156	Quantitative 3D Analysis of Nitric Oxide Diffusion in a 3D Artery Model Using Sensor Particles. Angewandte Chemie - International Edition, 2011, 50, 7557-7561.	13.8	38
157	Biocompatible and Highly Sensitive Nitric Oxide Sensor Particles Prepared by Layer-by-layer Assembly. Chemistry Letters, 2010, 39, 42-43.	1.3	19
158	2P223 Effect of fibronetcin thin film on insertion efficiency of a nanoneedle into culture cells(The) Tj ETQq0 0 0 rg	587./Overl	ock 10 Tf 50
159	EphA2-derived peptide vaccine with amphiphilic poly(\hat{I}^3 -glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor. Cancer Immunology, Immunotherapy, 2010, 59, 759-767.	4.2	49
160	Amphiphilic Poly(Amino Acid) Nanoparticles Induce Sizeâ€Dependent Dendritic Cell Maturation. Advanced Functional Materials, 2010, 20, 3925-3931.	14.9	58
161	Thermal stability of porous <i>it</i> â€PMMA thin film obtained by the extraction of <i>st</i> â€PMAA from <i>it</i> â€PMMA/ <i>st</i> â€PMAA stereocomplex with layerâ€byâ€layer assembly on a substrate. Journal of Polymer Science Part A, 2010, 48, 3265-3270.	2.3	10
162	Specific recognition of syndiotactic poly(methacrylic acid) in porous isotactic poly(methyl) Tj ETQq0 0 0 rgBT /Ove	erlock 10 ⁻ 2.3	Tf 50 67 Td (10

of Polymer Science Part A, 2010, 48, 3651-3657.

#	Article	IF	Citations
163	Morphological changes of isotactic poly(methyl methacrylate) thin films via self-organization and stereocomplex formation. Polymer Journal, 2010, 42, 131-137.	2.7	11
164	Control of Cell Surface and Functions by Layer-by-Layer Nanofilms. Langmuir, 2010, 26, 5670-5678.	3.5	94
165	Three-dimensional constructs induce high cellular activity: Structural stability and the specific production of proteins and cytokines. Biochemical and Biophysical Research Communications, 2010, 402, 153-157.	2.1	32
166	Evaluation of the immune response and protective effects of rhesus macaques vaccinated with biodegradable nanoparticles carrying gp120 of human immunodeficiency virus. Vaccine, 2010, 28, 5377-5385.	3.8	18
167	Fabrication of Surface-Modified Hydrogels with Polyion Complex for Controlled Release. Chemistry of Materials, 2010, 22, 2923-2929.	6.7	44
168	Studies on Preparation and Fluorescent Properties of a Novel Photoâ€Sensitive Nanoparticle Composed of Europium Ion and Cinnamic Acid Derivative. Macromolecular Chemistry and Physics, 2009, 210, 2063-2069.	2.2	12
169	Preparation of Size Tunable Amphiphilic Poly(amino acid) Nanoparticles. Macromolecular Bioscience, 2009, 9, 842-848.	4.1	40
170	Macromol. Biosci. 9/2009. Macromolecular Bioscience, 2009, 9, NA-NA.	4.1	0
171	Modulation of innate and adaptive immunity by biodegradable nanoparticles. Immunology Letters, 2009, 125, 46-52.	2.5	53
172	Macroporous Silicagel Substrate for Stereoregular Template Polymerization of Methacrylic Acid Using Stereocomplex Assembled Thin Films. Polymer Journal, 2009, 41, 90-93.	2.7	15
173	Heterofunctional Interfaces Achieve Dual Protein Adsorption on Polyelectrolyte Multilayers. Polymer Journal, 2009, 41, 486-491.	2.7	9
174	Development of Photoreactive Degradable Branched Polyesters with High Thermal and Mechanical Properties. Biomacromolecules, 2009, 10, 766-772.	5.4	36
175	Poly(\hat{l}^3 -glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine, 2009, 27, 5896-5905.	3.8	82
176	Radical Polymerization of Novel N-Substituted-N-vinylacetamides and Regulated Polymer Structures by Bulky Substituents and Menthol Coordination. Macromolecules, 2009, 42, 489-493.	4.8	11
177	Nanoscale Control of Hetero-biointerfaces. Hyomen Kagaku, 2009, 30, 193-201.	0.0	O
178	Methacrylic acid and methyl methacrylate oligomers adsorbed to porous isotactic poly(methyl) Tj ETQq0 0 0 rgBT Polymer Science Part A, 2008, 46, 5879-5886.	/Overlock 2.3	10 Tf 50 14 12
179	Preparation of flexible and transparent polylactic acids films by crystallization manipulation. Journal of Polymer Science Part A, 2008, 46, 6489-6495.	2.3	7
180	Poly(γâ€glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: Potential for an AIDS vaccine. Journal of Medical Virology, 2008, 80, 11-19.	5.0	85

#	Article	IF	CITATIONS
181	Fabrication of Temperatureâ€Responsive Bending Hydrogels with a Nanostructured Gradient. Advanced Materials, 2008, 20, 2080-2083.	21.0	167
182	Photo-Cross-Linking and Cleavage Induced Reversible Size Change of Bio-Based Nanoparticles. Macromolecules, 2008, 41, 8167-8172.	4.8	73
183	Nanoparticles built by self-assembly of amphiphilic \hat{I}^3 -PGA can deliver antigens to antigen-presenting cells with high efficiency: A new tumor-vaccine carrier for eliciting effector T cells. Vaccine, 2008, 26, 1303-1313.	3.8	79
184	Development of amphiphilic Î ³ -PGA-nanoparticle based tumor vaccine: Potential of the nanoparticulate cytosolic protein delivery carrier. Biochemical and Biophysical Research Communications, 2008, 366, 408-413.	2.1	80
185	Unique Inclusion Complex Formation between Skeleton-Modified Cyclodextrin and Polymers. Macromolecules, 2008, 41, 3393-3395.	4.8	8
186	Cell Adhesion and Proliferation on Poly(N-vinylacetamide) Hydrogels and Double Network Approaches for Changing Cellular Affinities. Biomacromolecules, 2008, 9, 426-430.	5.4	22
187	Dynamics of Polymer Chains in Porous Thin Films Prepared by Layer-by-layer Assembly of Isotactic Poly(methyl methacrylate) and Syndiotactic Poly(methacrylic acid). Chemistry Letters, 2008, 37, 332-333.	1.3	17
188	Targeting of Antigen to Dendritic Cells with Poly(\hat{i}^3 -Glutamic Acid) Nanoparticles Induces Antigen-Specific Humoral and Cellular Immunity. Journal of Immunology, 2007, 178, 2979-2986.	0.8	200
189	Fabrication and enzymatic degradation of fibronectin-based ultrathin films. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1565-1573.	3.5	18
190	Fabrication of Cellular Multilayers with Nanometer-Sized Extracellular Matrix Films. Angewandte Chemie - International Edition, 2007, 46, 4689-4692.	13.8	185
191	Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials, 2007, 28, 3427-3436.	11.4	161
192	Micromorphology Memory in Amphiphilic Polypeptides. Polymer Journal, 2007, 39, 737-744.	2.7	4
193	Controlled degradation of porous poly(lactide) stereocomplex films prepared by the selective extraction of co-assembled poly(vinyl alcohol). Polymer Bulletin, 2007, 58, 703-709.	3.3	5
194	Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: Potential applications. Polymer, 2007, 48, 6729-6747.	3.8	107
195	Stereoregular Polymerization within Template Nanospaces. Polymer Journal, 2006, 38, 311-328.	2.7	27
196	Unique Physical Adsorption of Proteins onto Double Stranded Stereocomplex Films Composed of Stereoregular Poly(methyl methacrylate)s. Polymer Journal, 2006, 38, 503-506.	2.7	9
197	Rapid deswelling of semi-IPNs with nanosized tracts in response to pH and temperature. Journal of Controlled Release, 2006, 110, 387-394.	9.9	50
198	Polyelectrolyte multilayers of poly(vinylamine hydrochloride-co-N-vinylformamide) with variable primary amine content and a weak polyacid poly(acrylic acid). Journal of Applied Polymer Science, 2006, 102, 3927-3933.	2.6	2

#	Article	IF	Citations
199	Back Cover: Macromol. Biosci. 11/2006. Macromolecular Bioscience, 2006, 6, 968-968.	4.1	O
200	Chitosan-Hydroxybenzotriazole Aqueous Solution: A Novel Water-Based System for Chitosan Functionalization. Macromolecular Rapid Communications, 2006, 27, 1039-1046.	3.9	35
201	One-step nanomorphology control of self-organized projection coronas in uniform polymeric nanoparticles. Polymer, 2005, 46, 12166-12171.	3.8	3
202	Preparation and characterization of biodegradable nanoparticles based on poly(\hat{l}^3 -glutamic acid) with l-phenylalanine as a protein carrier. Journal of Controlled Release, 2005, 108, 226-236.	9.9	178
203	In vitro Enzymatic Degradation of Nanoparticles Prepared from Hydrophobically-Modified Poly(γ-glutamic acid). Macromolecular Bioscience, 2005, 5, 598-602.	4.1	58
204	Ultrarapid Molecular Release from Poly(N-isopropylacrylamide) Hydrogels Perforated Using Silica Nanoparticle Networks. Macromolecular Chemistry and Physics, 2005, 206, 566-574.	2.2	40
205	Polyelectrolyte multilayers prepared on hydrogel surfaces. Journal of Polymer Science Part A, 2005, 43, 1062-1067.	2.3	16
206	Self-assembled Soft Nanofibrils of Amphipathic Polypeptides and Their Morphological Transformation. Chemistry of Materials, 2005, 17, 2484-2486.	6.7	27
207	Template Polymerization Using Artificial Double Strands. Macromolecules, 2005, 38, 6759-6761.	4.8	40
208	Polymerization within a molecular-scale stereoregular template. Nature, 2004, 429, 52-55.	27.8	175
209	Controlled hydrophobic/hydrophilic chitosan: colloidal phenomena and nanosphere formation. Colloid and Polymer Science, 2004, 282, 337-342.	2.1	50
210	Specific thermosensitive volume change of biopolymer gels derived from propylated poly(?-glutamate)s. Journal of Polymer Science Part A, 2004, 42, 4492-4501.	2.3	31
211	Thermotropic Liquid-Crystalline Polymer Derived from Natural Cinnamoyl Biomonomers. Macromolecular Rapid Communications, 2004, 25, 673-677.	3.9	72
212	One-Step Formation of Morphologically Controlled Nanoparticles with Projection Coronas. Macromolecules, 2004, 37, 501-506.	4.8	25
213	Precise Synthesis of ABA Triblock Copolymers Comprised of Poly(ethylene oxide) and Poly(β-benzyl-l-aspartate): A Hierarchical Structure Inducing Excellent Elasticity. Macromolecules, 2004, 37, 1370-1377.	4.8	44
214	Stably-dispersed and Surface-functional Bionanoparticles Prepared by Self-assembling Amphipathic Polymers of Hydrophilic Poly(γ-glutamic acid) Bearing Hydrophobic Amino Acids. Chemistry Letters, 2004, 33, 398-399.	1.3	87
215	Ultrathin Hydrogels Prepared from Poly(acrylic acid-co-acrylamide) and Poly(vinylamine) on a Solid Substrate. Polymer Journal, 2004, 36, 54-58.	2.7	2
216	Synthesis and Clinical Application to Drug Delivery System of Core-Corona Type Polymeric Nanospheres. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 520-528.	0.1	1

#	Article	IF	Citations
217	Synthesis and Thermosensitive Properties of Poly[(N-vinylamide)-co-(vinyl acetate)]s and Their Hydrogels. Macromolecular Chemistry and Physics, 2003, 204, 1027-1033.	2.2	56
218	Recognition of Stereoregular Polymers by Using Structurally Regulated Ultrathin Polymer Films. Angewandte Chemie - International Edition, 2003, 42, 1118-1121.	13.8	53
219	Synthesis and functionalities of poly(N-vinylalkylamide). XIV. Polyvinylamine produced by hydrolysis of poly(N-vinylformamide) and its functionalization. Journal of Applied Polymer Science, 2003, 89, 1277-1283.	2.6	49
220	Novel functional polymers: Poly(dimethyl siloxane)-polyamide multiblock copolymers. XI. The effects of sequence regularity on the thermal and mechanical properties. Journal of Polymer Science Part A, 2003, 41, 841-852.	2.3	18
221	Adsorption of bovine serum albumin onto poly(methyl methacrylate) stereocomplex films with a molecularly regulated nanostructure. Journal of Polymer Science Part A, 2003, 41, 1807-1812.	2.3	9
222	Alkaline Hydrolysis of Enantiomeric Poly(lactide)s Stereocomplex Deposited on Solid Substrates. Macromolecules, 2003, 36, 1762-1765.	4.8	37
223	Human Calcitonin Delivered Orally by Means of Nanoparticles Composed of Novel Graft Copolymers. Journal of Dispersion Science and Technology, 2003, 24, 623-632.	2.4	4
224	\hat{I}^3 -Ray Irradiation Practical Conditions for Low Molecular Weight Chitosan Material Production. Materials Research Society Symposia Proceedings, 2003, 792, 389.	0.1	0
225	Thermosensitive Behavior of Poly(N-isopropylacrylamide) Grafted Polystyrene Nanoparticles. Polymer Journal, 2003, 35, 901-910.	2.7	25
226	Controlled Polymer Desorption from Layer-by-Layer Assembly into Dilute Ionic Solutions. Polymer Journal, 2003, 35, 810-814.	2.7	4
227	Novel Functional Polymers. Poly(dimethylsiloxane)-Polyamide Multiblock Copolymers X. 1H NMR Analysis on Fine Structure of Aramid-Silicone Resin. Polymer Journal, 2002, 34, 395-399.	2.7	5
228	Rapid Deswelling of Porous Poly(N-isopropylacrylamide) Hydrogels Prepared by Incorporation of Silica Particles. Macromolecules, 2002, 35, 10-12.	4.8	203
229	Enzymatic Hydrolysis of a Layer-by-Layer Assembly Prepared from Chitosan and Dextran Sulfate. Macromolecules, 2002, 35, 8656-8658.	4.8	113
230	Rapid and controlled deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by the templating of interpenetrated nanoporous silica particles. Journal of Polymer Science Part A, 2002, 40, 3542-3547.	2.3	22
231	Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment. Journal of Polymer Science Part A, 2002, 40, 4228-4235.	2.3	63
232	HSP 47 and collagen mRNA expression in L929 cells adhered to lipid films. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 149-156.	3.5	5
233	Graft Copolymer Having Hydrophobic Backbone and Hydrophilic Branches. 33. Interaction of Hepatocytes and Polystyrene Nanospheres Having Lactose-Immobilized Hydrophilic Polymers on Their Surfaces. Biomacromolecules, 2001, 2, 1343-1346.	5.4	11
234	Hydrophobic Chain Conjugation at Hydroxyl Group onto \hat{I}^3 -Ray Irradiated Chitosan. Biomacromolecules, 2001, 2, 1038-1044.	5.4	45

#	Article	IF	Citations
235	Synthesis and Lectin Recognition of Polystyrene Coreâ^'Glycopolymer Corona Nanospheresâ€. Biomacromolecules, 2001, 2, 469-475.	5.4	53
236	Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid and D,L-lactic acid. Journal of Applied Polymer Science, 2001, 82, 2357-2364.	2.6	62
237	Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid and D,Lâ€lactic acid. Journal of Applied Polymer Science, 2001, 82, 2357-2364.	2.6	2
238	Study on complex formation between recombinant human thrombomodulin fragment and thrombin using surface plasmon resonance., 2000, 63, 136-140.		4
239	Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process., 2000, 50, 344-352.		100
240	Nanosphere formation in copolymerization of methyl methacrylate with poly(ethylene glycol) macromonomers. Journal of Polymer Science Part A, 2000, 38, 1811-1817.	2.3	25
241	Graft copolymers having hydrophobic backbone and hydrophilic branches. XXX. Preparation of polystyrene-core nanospheres having a poly(2-methacryloyloxyethyl phosphorylcholine) corona. Journal of Polymer Science Part A, 2000, 38, 3052-3058.	2.3	29
242	Synthesis and functionalities of poly(N-vinylalkylamide). XII. Synthesis and thermosensitive property of poly(vinylamine) copolymer prepared from poly(N-vinylformamide-co-N-vinylisobutyramide). Journal of Polymer Science Part A, 2000, 38, 3674-3681.	2.3	37
243	Study of cellular responses to polymeric biomaterials using the differential display method. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 333-340.	3.5	6
244	Polymyxin B binds to anandamide and inhibits its cytotoxic effect. FEBS Letters, 2000, 470, 151-155.	2.8	102
245	Transmission Electron Microscopic Study of Cross-Sectional Morphologies of Coreâ^'Corona Polymeric Nanospheresâ€. Macromolecules, 2000, 33, 1759-1764.	4.8	59
246	Stepwise Stereocomplex Assembly of Stereoregular Poly(methyl methacrylate)s on a Substrate. Journal of the American Chemical Society, 2000, 122, 1891-1899.	13.7	187
247	Alternating Bioactivity of Polymeric Layer-by-Layer Assemblies:  Anti- vs Procoagulation of Human Blood on Chitosan and Dextran Sulfate Layers. Biomacromolecules, 2000, 1, 306-309.	5.4	110
248	Ca-adsorption and apatite deposition on silk fabrics modified with phosphate polymer chains. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 787-793.	3.5	37
249	A study on hydroxyapatite formation on/in the hydroxyl groups-bearing nonionic hydrogels. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 19-32.	3.5	38
250	Synthesis of polystyrene nanospheres having lactose-conjugated hydrophilic polymers on their surfaces and carbohydrate recognition by proteins. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 391-401.	3.5	23
251	Surface grafting of poly(vinylamine) onto poly(ethylene) film by corona discharge-induced grafting. Journal of Applied Polymer Science, 1999, 72, 1583-1587.	2.6	19
252	Synthesis and functionality of poly(N-vinylalkylamide). X. A novel aqueous two-phase system based on thermosensitive polymers and dextran. Journal of Applied Polymer Science, 1999, 73, 2545-2548.	2.6	14

#	Article	IF	CITATIONS
253	Novel surface modification of cellulose film by heat-set finishing method using poly(ethylene) Tj ETQq1 1 0.78431	4 rgBT /C 2.6	Dverlock 10 T
254	Surface modification of poly(ethylene terephthalate) film by coating with poly(ethylene) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf 2.6	[:] 50,702 Td (
255	Surface modification of synthetic fiber nonwoven fabrics with poly(acrylic acid) chains prepared by corona discharge induced grafting. Angewandte Makromolekulare Chemie, 1999, 266, 56-62.	0.2	27
256	Improved alternate deposition of biodegradable naturally occurring polymers onto a quartz crystal microbalance. Journal of Polymer Science Part A, 1999, 37, 801-804.	2.3	26
257	A novel approach for fabricating ultrathin polymer films by the repetition of the adsorption/drying processes. Journal of Polymer Science Part A, 1999, 37, 1903-1906.	2.3	9
258	Graft copolymers having hydrophobic backbone and hydrophilic branches. XXIII. Particle size control of poly(ethylene glycol)-coated polystyrene nanoparticles prepared by macromonomer method. Journal of Polymer Science Part A, 1999, 37, 2155-2166.	2.3	52
259	Graft copolymers having hydrophobic backbone and hydrophilic branches. xvi. Polystyrene microspheres with poly(N-isopropylacrylamide) branches on their surfaces: size control factors and thermosensitive behavior. Polymers for Advanced Technologies, 1999, 10, 120-126.	3.2	27
260	Temperature-responsive catalytic activity of poly(N-isopropylacrylamide)-protected Au/Pt bimetallic nanoparticles in aqueous solutions. Polymers for Advanced Technologies, 1999, 10, 127-133.	3.2	20
261	Stepwise Assembly of Ultrathin Poly(vinyl alcohol) Films on a Gold Substrate by Repetitive Adsorption/Drying Processes. Langmuir, 1999, 15, 5363-5368.	3.5	72
262	Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 331-339.	3.5	99
263	Synthesis and Characterization of Poly(N-isopropylacrylamide)-Coated Polystyrene Microspheres with Silver Nanoparticles on Their Surfacesâ€. Langmuir, 1999, 15, 7998-8006.	3.5	70
264	Apatite formation on/in hydrogel matrices using an alternate soaking process (III): Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 795-804.	3.5	66
265	Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches XXI. Preparation of Galactose Surface-Accumulated Polystyrene Nanospheres and Their Interaction with Lectin. Polymer Journal, 1999, 31, 970-973.	2.7	13
266	Graft copolymers having hydrophobic backbone and hydrophilic branches. xvi. Polystyrene microspheres with poly(Nâ€isopropylacrylamide) branches on their surfaces: size control factors and thermosensitive behavior. Polymers for Advanced Technologies, 1999, 10, 120-126.	3.2	3
267	Base-specific separation of oligodeoxynucleotides by capillary affinity gel electrophoresis. Electrophoresis, 1998, 19, 433-436.	2.4	19
268	In-Situ Formation of Silver Nanoparticles on Poly(N-isopropylacrylamide)-Coated Polystyrene Microspheres. Advanced Materials, 1998, 10, 1122-1126.	21.0	142
269	Graft copolymers having hydrophobic backbone and hydrophilic branches. XVIII. Poly(styrene) nanospheres with novel thermosensitive poly(N-vinylisobutyramide)s on their surfaces. Journal of Polymer Science Part A, 1998, 36, 2581-2587.	2.3	36
270	Concanavalin A-immobilized polystyrene nanospheres capture HIV-1 virions and gp120: Potential approach towards prevention of viral transmission., 1998, 56, 327-331.		46

#	Article	IF	Citations
271	Synthesis and functionalities of poly(N-vinylalkylamide). VII. A novel aqueous two-phase systems based on poly(N-vinylacetamide) and dextran. Journal of Applied Polymer Science, 1998, 67, 255-258.	2.6	9
272	Preparation of a novel functional hydrogel consisting of sulfated glucoside-bearing polymer: Activation of basic fibroblast growth factor., 1998, 41, 386-391.		32
273	Unusual Size Formation of Polymeric Nanospheres Synthesized by Free Radical Polymerization in Ethanolâ^'Water Mixed Solvents. Langmuir, 1998, 14, 1278-1280.	3.5	25
274	Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique. Langmuir, 1998, 14, 4088-4094.	3.5	107
275	Capture of HIV-1 gp120 and Virions by Lectin-Immobilized Polystyrene Nanospheresâ€. Bioconjugate Chemistry, 1998, 9, 50-53.	3.6	74
276	Anticoagulant and antiprotease activities of a heparinoid sulfated glucoside-bearing polymer. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 973-984.	3.5	9
277	In-Situ Formation of Silver Nanoparticles on Poly(N-isopropylacrylamide)-Coated Polystyrene Microspheres. Advanced Materials, 1998, 10, 1122-1126.	21.0	3
278	The mechanism of anticoagulant activity of a novel heparinoid sulfated glucoside-bearing polymer. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 545-553.	3.5	9
279	Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis II: Study of HSP 70 mRNA expression. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 809-814.	3.5	17
280	Preparation and anticoagulant surface properties of glucosideâ€or sulfated glucosideâ€bearing polymer grafted poly(ethylene) films. Macromolecular Symposia, 1997, 120, 159-167.	0.7	6
281	Novel Functional Polymers: Poly(dimethylsiloxane)-Polyamide Multiblock Copolymer VI. A Transmission Electron Microscopic Study on Microphase-Separated Structure in Aramid-Silicone Resin. Polymer Journal, 1997, 29, 201-203.	2.7	10
282	A Simple Structural Model for the Polymer Microsphere Stabilized by the Poly(ethylene oxide) Macromonomers Grafted on Its Surface. Macromolecules, 1997, 30, 2187-2189.	4.8	52
283	Preparation of ultrafine platinum particles protected by poly(N-isopropylacrylamide) and their catalytic activity in the hydrogenation of allyl alcohol. Journal of Polymer Science Part A, 1997, 35, 1329-1332.	2.3	17
284	Synthesis and functionalities of poly (N-vinylalkylamide). IV. Synthesis and free radical polymerization of N-vinylisobutyramide and thermosensitive properties of the polymer. Journal of Polymer Science Part A, 1997, 35, 1763-1768.	2.3	75
285	Synthesis and functionalities of poly(N-vinylalkylamide). V. Control of a lower critical solution temperature of poly(N-vinylalkylamide). Journal of Polymer Science Part A, 1997, 35, 3087-3094.	2.3	87
286	Synthesis and functionalities of poly(N-vinylalkylamide). VI. A novel thermosensitive hydrogel crosslinked poly(N-vinylisobutyramide). Journal of Polymer Science Part A, 1997, 35, 3377-3384.	2.3	26
287	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. VII. Oxygen permeability of aramid-silicone membranes in a gas-membrane-liquid system. Journal of Applied Polymer Science, 1997, 64, 1153-1159.	2.6	10
288	Synthesis and functionalities of poly(N-vinylalkylamide). IV. Synthesis and free radical polymerization of N-vinylisobutyramide and thermosensitive properties of the polymer., 1997, 35, 1763.		1

#	Article	IF	Citations
289	Synthesis and functionalities of poly (Nâ€vinylalkylamide). IV. Synthesis and free radical polymerization of Nâ€vinylisobutyramide and thermosensitive properties of the polymer. Journal of Polymer Science Part A, 1997, 35, 1763-1768.	2.3	1
290	Synthesis and functionalities of poly(Nâ€vinylalkylamide). V. Control of a lower critical solution temperature of poly(Nâ€vinylalkylamide). Journal of Polymer Science Part A, 1997, 35, 3087-3094.	2.3	1
291	Synthesis and Anticoagulant Activity of Sulfated Glucoside-Bearing Polymer. Bioconjugate Chemistry, 1996, 7, 393-395.	3.6	50
292	Synthesis of poly(N-vinylisobutyramide) from poly(N-vinylacetamide) and its thermosensitive property. Journal of Polymer Science Part A, 1996, 34, 301-303.	2.3	67
293	Graft copolymers having hydrophobic backbone and hydrophilic branches. XI. Preparation and thermosensitive properties of polystyrene microspheres having poly (N-isopropylacrylamide) branches on their surfaces. Journal of Polymer Science Part A, 1996, 34, 2213-2220.	2.3	85
294	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. III. Synthesis and surface properties of disiloxane-aromatic polyamide multiblock copolymer. Journal of Applied Polymer Science, 1996, 59, 1059-1065.	2.6	27
295	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. IV. Gas permeability and thermomechanical properties of aramid-silicone resins. Journal of Applied Polymer Science, 1996, 59, 1067-1071.	2.6	21
296	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer V*. The interaction between biomolecules and the surface of aramid-silicone resins. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 871-880.	3.5	16
297	Novel functional polymers: Poly(dimethylsiloxane)–polyamide multiblock copolymer. IV. Gas permeability and thermomechanical properties of aramid–silicone resins. , 1996, 59, 1067.		1
298	Synthesis of poly(Nâ€vinylisobutyramide) from poly(Nâ€vinylacetamide) and its thermosensitive property. Journal of Polymer Science Part A, 1996, 34, 301-303.	2.3	1
299	Graft copolymers having hydrophobic backbone and hydrophilic branches. X. Preparation and properties of water-dispersible polyanionic microspheres having poly(methacrylic acid) branches on their surfaces. Journal of Polymer Science Part A, 1995, 33, 1219-1225.	2.3	48
300	A novel biomaterial: Poly(dimethylsiloxane)-polyamide multiblock copoly mer I. Synthesis and evaluation of blood compatibility. Journal of Biomaterials Science, Polymer Edition, 1994, 5, 89-98.	3.5	24
301	Title is missing!. Angewandte Makromolekulare Chemie, 1994, 220, 89-97.	0.2	14
302	Synthesis of nonionic and anionic hydrogels bearing a monosaccharide residue and their properties. Journal of Applied Polymer Science, 1994, 52, 1759-1763.	2.6	11
303	Evaluation of the Selective Binding Ability of Oligodeoxynucleotides to Poly(9-vinyladenine) Using Capillary Affinity Gel Electrophoresis Analytical Sciences, 1994, 10, 967-969.	1.6	12
304	Title is missing!. Angewandte Makromolekulare Chemie, 1993, 206, 69-75.	0.2	27
305	Novel nonionic and cationic hydrogels prepared from N-vinylacetamide. Journal of Polymer Science Part A, 1993, 31, 1153-1160.	2.3	39
306	Spectroscopic study of the interaction between poly-(9-vinyladenine) and single or multistrand RNA. Biopolymers, 1992, 32, 811-817.	2.4	18

#	Article	IF	CITATIONS
307	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 2843-2860.	1.1	61
308	Prompt hydrolysis of oligo(adenylic acid) by poly(vinylamine). Die Makromolekulare Chemie Rapid Communications, 1992, 13, 217-219.	1.1	2
309	Specific separation of oligodeoxynucleotides by capillary affinity gel electrophoresis (CAGE) using poly(9-vinyladenine) - polyacrylamide conjugated gel. Journal of High Resolution Chromatography, 1992, 15, 625-626.	1.4	18
310	A novel synthetic procedure of vinylacetamide and its free radical polymerization. Journal of Polymer Science Part A, 1990, 28, 3487-3497.	2.3	49
311	Acrylic nonaqueous dispersion using butylated melamine-formaldehyde resin as dispersant. Journal of Applied Polymer Science, 1989, 37, 915-923.	2.6	1
312	Polymer drugs and polymeric drugs. II. Synthesis of water dispersible microspheres having 5-fluorouracil and theophylline using a water soluble macromonomer. Journal of Polymer Science, Part C: Polymer Letters, 1989, 27, 377-380.	0.7	26
313	Graft copolymers having hydrophobic backbone and hydrophilic branches. IV. A copolymerization study of water-soluble oligovinylpyrrolidone macromonomers. Journal of Polymer Science Part A, 1989, 27, 3521-3530.	2.3	70
314	Graft copolymers having hydrophobic backbone and hydrophilic branches. III. Synthesis of graft copolymers having oligovinylpyrrolidone as hydrophilic branch. Journal of Polymer Science Part A, 1988, 26, 1561-1571.	2.3	16
315	Synthesis and polymerization of new vinyl derivatives of thymine. Angewandte Makromolekulare Chemie, 1987, 147, 207-213.	0.2	4
316	Convenient determination of methoxy groups of methylated melamine-formaldehyde resins by IR spectroscopy. Journal of Applied Polymer Science, 1987, 34, 2601-2607.	2.6	3
317	Synthesis and polymerization of a styryl terminated oligovinylpyrrolidone macromonomer. Angewandte Makromolekulare Chemie, 1985, 132, 81-89.	0.2	85
318	Title is missing!. Angewandte Makromolekulare Chemie, 1984, 122, 147-152.	0.2	16
319	Title is missing!. Die Makromolekulare Chemie, 1977, 178, 353-364.	1.1	24
320	Title is missing!. Die Makromolekulare Chemie, 1977, 178, 1211-1214.	1.1	23