List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6145121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet, The, 2022, 399, 372-383.	13.7	109
2	The EHA Research Roadmap: Hematopoietic Stem Cell Gene Therapy. HemaSphere, 2022, 6, e671.	2.7	8
3	A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nature Communications, 2022, 13, 1315.	12.8	61
4	Liver-directed lentiviral gene therapy corrects hemophilia A mice and achieves normal-range factor VIII activity in non-human primates. Nature Communications, 2022, 13, 2454.	12.8	11
5	Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell, 2022, 185, 2248-2264.e21.	28.9	26
6	Targeted inducible delivery of immunoactivating cytokines reprograms glioblastoma microenvironment and inhibits growth in mouse models. Science Translational Medicine, 2022, 14, .	12.4	32
7	WFH Stateâ€ofâ€theâ€art paper 2020: In vivo lentiviral vector gene therapy for haemophilia. Haemophilia, 2021, 27, 122-125.	2.1	21
8	Hematopoietic Tumors in a Mouse Model of X-linked Chronic Granulomatous Disease after Lentiviral Vector-Mediated Gene Therapy. Molecular Therapy, 2021, 29, 86-102.	8.2	17
9	Conditioning Regimens in Long-Term Pre-Clinical Studies to Support Development of <i>Ex Vivo</i> Gene Therapy: Review of Nonproliferative and Proliferative Changes. Human Gene Therapy, 2021, 32, 66-76.	2.7	10
10	Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyperâ€igM syndrome. EMBO Molecular Medicine, 2021, 13, e13545.	6.9	36
11	BAR-Seq clonal tracking of gene-edited cells. Nature Protocols, 2021, 16, 2991-3025.	12.0	11
12	Retrieval of vector integration sites from cell-free DNA. Nature Medicine, 2021, 27, 1458-1470.	30.7	26
13	Therapeutic liver repopulation by transient acetaminophen selection of gene-modified hepatocytes. Science Translational Medicine, 2021, 13, .	12.4	16
14	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	4.8	134
15	Myeloid cellâ€based delivery of IFNâ€Ĵ³ reprograms the leukemia microenvironment and induces antiâ€tumoral immune responses. EMBO Molecular Medicine, 2021, 13, e13598.	6.9	13
16	Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Advances, 2021, 5, 3174-3187.	5.2	18
17	Towards Clinical Translation of Hematopoietic Cell Gene Editing for Treating Hyper-IgM Type 1. Blood, 2021, 138, 3978-3978.	1.4	0
18	Hematopoietic Stem- and Progenitor-Cell Gene Therapy for Hurler Syndrome. New England Journal of Medicine, 2021, 385, 1929-1940.	27.0	75

#	Article	IF	CITATIONS
19	Assessing Stealth and Sensed Base Editing in Human Hematopoietic Stem/Progenitor Cells. Blood, 2021, 138, 3976-3976.	1.4	0
20	Lentiviral-Mediated Gene Therapy for the Treatment of Adenosine Deaminase 2 Deficiency. Blood, 2021, 138, 2937-2937.	1.4	0
21	MNK2 governs the macrophage antiinflammatory phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27556-27565.	7.1	24
22	Laboratory-Scale Lentiviral Vector Production and Purification for Enhanced ExÂVivo and InÂVivo Genetic Engineering. Molecular Therapy - Methods and Clinical Development, 2020, 19, 411-425.	4.1	21
23	Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nature Biotechnology, 2020, 38, 1298-1308.	17.5	116
24	InÂVivo Selection for Gene-Corrected HSPCs Advances Gene Therapy for a Rare Stem Cell Disease. Cell Stem Cell, 2019, 25, 592-593.	11.1	6
25	Adopt a moratorium on heritable genome editing. Nature, 2019, 567, 165-168.	27.8	314
26	Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature, 2019, 574, 200-205.	27.8	135
27	Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nature Medicine, 2019, 25, 234-241.	30.7	188
28	Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Molecular Medicine, 2019, 11, .	6.9	86
29	Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. Stem Cells Translational Medicine, 2019, 8, 1107-1122.	3.3	31
30	Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Science Translational Medicine, 2019, 11, .	12.4	65
31	Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Molecular Therapy, 2019, 27, 1215-1227.	8.2	17
32	Assessing the Impact of Cyclosporin A on Lentiviral Transduction and Preservation of Human Hematopoietic Stem Cells in Clinically RelevantEx VivoGene Therapy Settings. Human Gene Therapy, 2019, 30, 1133-1146.	2.7	8
33	Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell, 2019, 24, 551-565.e8.	11.1	237
34	Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematology,the, 2019, 6, e239-e253.	4.6	166
35	Modulation of immune responses in lentiviral vector-mediated gene transfer. Cellular Immunology, 2019, 342, 103802.	3.0	49
36	Extensive Metabolic Correction of Hurler Disease By Hematopoietic Stem Cell-Based Gene Therapy: Preliminary Results from a Phase I/II Trial. Blood, 2019, 134, 607-607.	1.4	5

#	Article	IF	CITATIONS
37	TEM-MM-101: A Phase I/lla Dose Escalation Study Evaluating the Safety and Activity of Autologous CD34+ Enriched Hematopoietic Progenitor Cells Genetically Modified for Human Interferon-α2 in Multiple Myeloma Patients with Early Relapse after Intensive Front Line Therapy. Blood, 2019, 134, 2064-2064.	1.4	0
38	Use of Defibrotide to help prevent post-transplant endothelial injury in a genetically predisposed infant with metachromatic leukodystrophy undergoing hematopoietic stem cell gene therapy. Bone Marrow Transplantation, 2018, 53, 913-917.	2.4	10
39	Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of nextâ€generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Molecular Medicine, 2018, 10, 254-275.	6.9	30
40	Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell, 2018, 23, 820-832.e9.	11.1	86
41	Multiple Integrated Non-clinical Studies Predict the Safety of Lentivirus-Mediated Gene Therapy for β-Thalassemia. Molecular Therapy - Methods and Clinical Development, 2018, 11, 9-28.	4.1	21
42	Interferon gene therapy reprograms the leukemia microenvironment inducing protective immunity to multiple tumor antigens. Nature Communications, 2018, 9, 2896.	12.8	39
43	Generation of Memory Stem T Cells Specific for Tumor Antigens and Resistant to Inhibitory Signals By Genome Editing. Blood, 2018, 132, 2202-2202.	1.4	0
44	Gene therapy for ADAâ€SCID, the first marketing approval of an <i>exÂvivo</i> gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Molecular Medicine, 2017, 9, 737-740.	6.9	210
45	Efficient ExÂVivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Reports, 2017, 8, 977-990.	4.8	124
46	Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Science Translational Medicine, 2017, 9, .	12.4	176
47	Genome editing for scalable production of alloantigenâ€free lentiviral vectors for <i>inÂvivo</i> geneÂtherapy. EMBO Molecular Medicine, 2017, 9, 1558-1573.	6.9	41
48	Therapeutic gene editing in <scp>CD</scp> 34 ⁺ hematopoietic progenitors from Fanconi anemia patients. EMBO Molecular Medicine, 2017, 9, 1574-1588.	6.9	54
49	NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood, 2017, 130, 606-618.	1.4	71
50	Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Molecular Medicine, 2017, 9, 1198-1211.	6.9	56
51	<scp>IFN</scp> α gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Molecular Medicine, 2016, 8, 155-170.	6.9	29
52	Angiopoietin 2 expression in the cornea and its control of corneal neovascularisation. British Journal of Ophthalmology, 2016, 100, 1005-1010.	3.9	7
53	Pervasive supply of therapeutic lysosomal enzymes in the <scp>CNS</scp> of normal and Krabbeâ€affected nonâ€human primates by intracerebral lentiviral gene therapy. EMBO Molecular Medicine, 2016, 8, 489-510.	6.9	50
54	42. Correction of SCID-X1 by Targeted Genome Editing of Hematopoietic Stem/Progenitor Cells (HSPC) in the Mouse Model. Molecular Therapy, 2016, 24, S18-S19.	8.2	1

#	Article	IF	CITATIONS
55	130. Purification of Large Scale mRNA Encoding ZFN Nucleases by dHPLC Technology. Molecular Therapy, 2016, 24, S53-S54.	8.2	2
56	512. The Cytokine Release Syndrome Crucially Contributes to the Anti-Leukemic Effects of CD44v6 CAR-T Cells. Molecular Therapy, 2016, 24, S204.	8.2	0
57	Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. Oncolmmunology, 2016, 5, e1122860.	4.6	20
58	Lentiviral vectors, two decades later. Science, 2016, 353, 1101-1102.	12.6	96
59	Debate on Germline Gene Editing. Human Gene Therapy Methods, 2016, 27, 135-142.	2.1	8
60	The Renaissance of Gene and Cell Therapy: Florence 2016. Human Gene Therapy, 2016, 27, 727-728.	2.7	0
61	Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell, 2016, 167, 219-232.e14.	28.9	363
62	Safer conditioning for blood stem cell transplants. Nature Biotechnology, 2016, 34, 721-723.	17.5	14
63	Preclinical Testing of the Safety and Tolerability of Lentiviral Vector–Mediated Above-Normal Alpha-L-Iduronidase Expression in Murine and Human Hematopoietic Cells Using Toxicology and Biodistribution Good Laboratory Practice Studies. Human Gene Therapy, 2016, 27, 813-829.	2.7	40
64	InÂVivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell Stem Cell, 2016, 19, 107-119.	11.1	187
65	miRNA-126 Orchestrates an Oncogenic Program in B Cell Precursor Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 905-921.	16.8	57
66	Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet, The, 2016, 388, 476-487.	13.7	393
67	miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell, 2016, 29, 214-228.	16.8	216
68	Incremental Innovation of Ex Vivo Hematopoietic Stem Cell Engineering to Expand Clinical Gene Therapy Applications. Blood, 2016, 128, 4707-4707.	1.4	0
69	27. Aberrant Expression of the Stem Cell microRNA-126 Induces B Cell Malignancy. Molecular Therapy, 2015, 23, S12.	8.2	0
70	281. Engineering Hematopoiesis for Tumor-Targeted Interferon-alpha Delivery Inhibits Multuple Myeloma and B Cell Malignancies. Molecular Therapy, 2015, 23, S112.	8.2	0
71	288. Dual-Regulated Lentiviral Vector for Gene Therapy of X-Linked Chronic Granulomatous Disease. Molecular Therapy, 2015, 23, S115-S116.	8.2	0
72	209. TCR Gene Editing in a Single Step of T Cell Activation To Redirect T Cell Specificity and Prevent GvHD. Molecular Therapy, 2015, 23, S82-S83.	8.2	0

#	Article	IF	CITATIONS
73	690. Permanent Epigenetic Silencing of Human Genes With Artificial Transcriptional Repressors. Molecular Therapy, 2015, 23, S275.	8.2	0
74	Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15038.	4.1	29
75	Shedding of clinical-grade lentiviral vectors is not detected in a gene therapy setting. Gene Therapy, 2015, 22, 496-502.	4.5	12
76	Insulin B chain 9–23 gene transfer to hepatocytes protects from type 1 diabetes by inducing Ag-specific FoxP3 ⁺ T _{regs} . Science Translational Medicine, 2015, 7, 289ra81.	12.4	55
77	The Impact of Amino Acid Variability on Alloreactivity Defines a Functional Distance Predictive of Permissive HLA-DPB1 Mismatches in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 233-241.	2.0	95
78	MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia. Experimental Hematology, 2015, 43, 858-868.e7.	0.4	28
79	Fighting Rare Diseases: The Model of the Telethon Research Institutes in Italy. Human Gene Therapy, 2015, 26, 183-185.	2.7	2
80	B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2015, 136, 692-702.e2.	2.9	41
81	Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Science Translational Medicine, 2015, 7, 277ra28.	12.4	118
82	CRISPR germline engineering—the community speaks. Nature Biotechnology, 2015, 33, 478-486.	17.5	110
83	Cellular Innate Immunity and Restriction of Viral Infection: Implications for Lentiviral Gene Therapy in Human Hematopoietic Cells. Human Gene Therapy, 2015, 26, 201-209.	2.7	30
84	Gene therapy returns to centre stage. Nature, 2015, 526, 351-360.	27.8	943
85	Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports, 2015, 5, 558-568.	4.8	21
86	Cyclosporin A and Rapamycin Relieve Distinct Lentiviral Restriction Blocks in Hematopoietic Stem and Progenitor Cells. Molecular Therapy, 2015, 23, 352-362.	8.2	50
87	Safety and Clinical Benefit of Lentiviral Hematopoietic Stem Cell Gene Therapy for Wiskott-Aldrich Syndrome. Blood, 2015, 126, 259-259.	1.4	7
88	Engineered tumor-infiltrating macrophages as gene delivery vehicles for interferon-α activates immunity and inhibits breast cancer progression. OncoImmunology, 2014, 3, e28696.	4.6	16
89	Dual-regulated Lentiviral Vector for Gene Therapy of X-linked Chronic Granulomatosis. Molecular Therapy, 2014, 22, 1472-1483.	8.2	59
90	Targeted gene therapy and cell reprogramming in <scp>F</scp> anconi anemia. EMBO Molecular Medicine, 2014, 6, 835-848.	6.9	66

#	Article	IF	CITATIONS
91	Therapeutic benefit of lentiviral-mediated neonatal intracerebral gene therapy in a mouse model of globoid cell leukodystrophy. Human Molecular Genetics, 2014, 23, 3250-3268.	2.9	56
92	Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014, 510, 235-240.	27.8	517
93	Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Research, 2014, 24, 1251-1259.	5.5	94
94	Genetic Engineering of Hematopoiesis for Targeted IFN-α Delivery Inhibits Breast Cancer Progression. Science Translational Medicine, 2014, 6, 217ra3.	12.4	86
95	Lentiviral Vector-based Insertional Mutagenesis Identifies Genes Involved in the Resistance to Targeted Anticancer Therapies. Molecular Therapy, 2014, 22, 2056-2068.	8.2	16
96	Genome Editing: A Tool For Research and Therapy: Targeted genome editing hits the clinic. Nature Medicine, 2014, 20, 1101-1103.	30.7	22
97	Uncovering and Dissecting the Genotoxicity of Self-inactivating Lentiviral Vectors In Vivo. Molecular Therapy, 2014, 22, 774-785.	8.2	142
98	Charting a Clear Path: The ASGCT Standardized Pathways Conference. Molecular Therapy, 2014, 22, 1235-1238.	8.2	10
99	Comprehensive Clonal Mapping of Hematopoiesis in Vivo in Humans By Retroviral Vector Insertional Barcoding. Blood, 2014, 124, 5-5.	1.4	2
100	NY-ESO-1 Single Edited T Cells to Treat Multiple Myeloma without Inducing GvHD. Blood, 2014, 124, 308-308.	1.4	0
101	Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy. Science, 2013, 341, 1233158.	12.6	998
102	Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science, 2013, 341, 1233151.	12.6	900
103	Liver gene therapy by lentiviral vectors reverses antiâ€factor <scp>IX</scp> preâ€existing immunity in haemophilic mice. EMBO Molecular Medicine, 2013, 5, 1684-1697.	6.9	55
104	miR-142-3p Prevents Macrophage Differentiation during Cancer-Induced Myelopoiesis. Immunity, 2013, 38, 1236-1249.	14.3	127
105	Immune responses in liver-directed lentiviral gene therapy. Translational Research, 2013, 161, 230-240.	5.0	21
106	Lentiviral vector–based insertional mutagenesis identifies genes associated with liver cancer. Nature Methods, 2013, 10, 155-161.	19.0	86
107	Targeted Gene Addition in Human Epithelial Stem Cells by Zinc-finger Nuclease-mediated Homologous Recombination. Molecular Therapy, 2013, 21, 1695-1704.	8.2	53
108	A Double-Switch Vector System Positively Regulates Transgene Expression by Endogenous microRNA Expression (miR-ON Vector). Molecular Therapy, 2013, 21, 934-946.	8.2	31

#	Article	IF	CITATIONS
109	CD4 ⁺ T Cells from IPEX Patients Convert into Functional and Stable Regulatory T Cells by <i>FOXP3</i> Gene Transfer. Science Translational Medicine, 2013, 5, 215ra174.	12.4	129
110	TIE2â€expressing monocytes/macrophages regulate revascularization of the ischemic limb. EMBO Molecular Medicine, 2013, 5, 858-869.	6.9	83
111	Preclinical Safety and Efficacy of Human CD34+ Cells Transduced With Lentiviral Vector for the Treatment of Wiskott-Aldrich Syndrome. Molecular Therapy, 2013, 21, 175-184.	8.2	72
112	A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood, 2013, 122, 243-252.	1.4	102
113	CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122, 3461-3472.	1.4	306
114	Dynamic Activity of miR-125b and miR-93 during Murine Neural Stem Cell Differentiation In Vitro and in the Subventricular Zone Neurogenic Niche. PLoS ONE, 2013, 8, e67411.	2.5	30
115	Off-Tumor Target Expression Levels Do Not Predict CAR-T Cell Killing: A Foundation For The Safety Of CD44v6-Targeted T Cells. Blood, 2013, 122, 142-142.	1.4	2
116	Mir-126 Governs Human Leukemia Stem Cell Quiescence and Chemotherapy Resistance. Blood, 2013, 122, 1647-1647.	1.4	1
117	CD44v6 Is Required For In Vivo Tumorigenesis Of Human AML and MM Cells: Role Of Microenvironmental Signals and Therapeutic Implications. Blood, 2013, 122, 605-605.	1.4	6
118	TCR Gene Editing Achieved In a Single Round Of T Cell Activation Is Sufficient To Redirect T Cell Specificity and Prevent GvHD. Blood, 2013, 122, 2898-2898.	1.4	0
119	Potent In Vivo Anti-Tumor Activity Of Extracellular Vesicles Isolated From Genetically Engineered Primary Mesenchymal Stromal Cells Expressing The Trans-Membrane TNF-Related Apoptosis-Inducing Ligand (TRAIL). Blood, 2013, 122, 1658-1658.	1.4	7
120	A Mechanistic Role For Mir-126, a Hematopoietic Stem Cell Microrna, In Acute Leukemias. Blood, 2013, 122, 886-886.	1.4	1
121	Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15018-15023.	7.1	168
122	Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death and Differentiation, 2012, 19, 1162-1174.	11.2	55
123	Exploiting <scp>microRNA</scp> regulation for genetic engineering. Tissue Antigens, 2012, 80, 393-403.	1.0	30
124	miR-511-3p Modulates Genetic Programs of Tumor-Associated Macrophages. Cell Reports, 2012, 1, 141-154.	6.4	193
125	Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice. Blood, 2012, 120, 4517-4520.	1.4	84
126	Attenuation of miR-126 Activity Expands HSC InÂVivo without Exhaustion. Cell Stem Cell, 2012, 11, 799-811.	11.1	197

#	Article	IF	CITATIONS
127	A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood, 2012, 119, 5697-5705.	1.4	437
128	Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nature Medicine, 2012, 18, 807-815.	30.7	398
129	The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiology of Disease, 2012, 46, 41-51.	4.4	159
130	Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations. Journal of Clinical Investigation, 2012, 122, 1667-1676.	8.2	104
131	Co-Expression of a Suicide Gene in CAR-Redirected T Cells Enables the Safe Targeting of CD44v6 for Leukemia and Myeloma Eradication. Blood, 2012, 120, 949-949.	1.4	3
132	Hematopoietic Stem Cell Expansion, without Exhaustion or Transformation, by Stable Microrna Antagonism in Vivo. Blood, 2012, 120, 30-30.	1.4	0
133	HIV-1-Derived Lentiviral Vectors Directly Activate Plasmacytoid Dendritic Cells, Which in Turn Induce the Maturation of Myeloid Dendritic Cells. Human Gene Therapy, 2011, 22, 177-188.	2.7	40
134	Minicircle DNA-based Gene Therapy Coupled With Immune Modulation Permits Long-term Expression of α-L-Iduronidase in Mice With Mucopolysaccharidosis Type I. Molecular Therapy, 2011, 19, 450-460.	8.2	86
135	Forkhead box protein 3 (FOXP3) mutations lead to increased TH17 cell numbers and regulatory T-cell instability. Journal of Allergy and Clinical Immunology, 2011, 128, 1376-1379.e1.	2.9	54
136	Large-Scale Manufacture and Characterization of a Lentiviral Vector Produced for Clinical <i>Ex Vivo</i> Gene Therapy Application. Human Gene Therapy, 2011, 22, 343-356.	2.7	165
137	Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nature Methods, 2011, 8, 861-869.	19.0	300
138	An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29, 816-823.	17.5	488
139	Lentiviral-mediated gene therapy leads to improvement of B-cell functionality in a murine model of Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2011, 127, 1376-1384.e5.	2.9	34
140	Manipulating Immune Tolerance with Micro-RNA Regulated Gene Therapy. Frontiers in Microbiology, 2011, 2, 221.	3.5	16
141	Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood, 2011, 117, 5332-5339.	1.4	201
142	TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. Journal of Clinical Investigation, 2011, 121, 1969-1973.	8.2	204
143	Ex vivo gene transfer and correction for cell-based therapies. Nature Reviews Genetics, 2011, 12, 301-315.	16.3	340
144	Genomic instability in induced stem cells. Cell Death and Differentiation, 2011, 18, 745-753.	11.2	138

#	Article	IF	CITATIONS
145	Targeting the ANG2/TIE2 Axis Inhibits Tumor Growth and Metastasis by Impairing Angiogenesis and Disabling Rebounds of Proangiogenic Myeloid Cells. Cancer Cell, 2011, 19, 512-526.	16.8	543
146	Neural Stem Cell Gene Therapy Ameliorates Pathology and Function in a Mouse Model of Globoid Cell Leukodystrophy. Stem Cells, 2011, 29, 1559-1571.	3.2	62
147	A microRNA-Based System for Selecting and Maintaining the Pluripotent State in Human Induced Pluripotent Stem Cells. Stem Cells, 2011, 29, 1684-1695.	3.2	29
148	Hepatocyteâ€ŧargeted expression by integraseâ€defective lentiviral vectors induces antigenâ€specific tolerance in mice with low genotoxic risk. Hepatology, 2011, 53, 1696-1707.	7.3	123
149	Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting. Molecular Therapy, 2011, 19, 1193-1198.	8.2	45
150	Lentiviral Vector Integration Profiles Differ in Rodent Postmitotic Tissues. Molecular Therapy, 2011, 19, 703-710.	8.2	51
151	Systemic and Targeted Delivery of Semaphorin 3A Inhibits Tumor Angiogenesis and Progression in Mouse Tumor Models. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 741-749.	2.4	105
152	Angiopoietin-2 TIEs Up Macrophages in Tumor Angiogenesis. Clinical Cancer Research, 2011, 17, 5226-5232.	7.0	88
153	Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. Journal of Cell Science, 2011, 124, 3643-3653.	2.0	32
154	A MicroRNA-regulated and GP64-pseudotyped Lentiviral Vector Mediates Stable Expression of FVIII in a Murine Model of Hemophilia A. Molecular Therapy, 2011, 19, 723-730.	8.2	72
155	TCR Gene Editing Results in Effective Immunotherapy of Leukemia without the Development of GvHD. Blood, 2011, 118, 667-667.	1.4	1
156	Dual Transgenesis of T Cells with a Novel CD44v6-Specific Chimeric Antigen Receptor and a Suicide Gene for Safe and Effective Targeting of Chemoresistance in Hematopoietic Tumors. Blood, 2011, 118, 3125-3125.	1.4	1
157	The galactocerebrosidase enzyme contributes to the maintenance of a functional hematopoietic stem cell niche. Blood, 2010, 116, 1857-1866.	1.4	50
158	Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood, 2010, 116, 5130-5139.	1.4	159
159	FcRÎ ³ Activation Regulates Inflammation-Associated Squamous Carcinogenesis. Cancer Cell, 2010, 17, 121-134.	16.8	537
160	Antagonizing metastasis. Nature Biotechnology, 2010, 28, 331-332.	17.5	4
161	Identification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy. Science Translational Medicine, 2010, 2, 58ra84.	12.4	180
162	Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Human Molecular Genetics, 2010, 19, 2208-2227.	2.9	77

#	Article	IF	CITATIONS
163	Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11602-11607.	7.1	42
164	Elusive Identities and Overlapping Phenotypes of Proangiogenic Myeloid Cells in Tumors. American Journal of Pathology, 2010, 176, 1564-1576.	3.8	137
165	Editing Human Lymphocyte Specificity for Safe and Effective Adoptive Immunotherapy of Leukemia Blood, 2010, 116, 3764-3764.	1.4	0
166	Identification and Function of Hematopoietic Stem and Progenitor Cell Specific Micrornas Blood, 2010, 116, 2631-2631.	1.4	0
167	Enriched MicroRNA-126 Bioactivity Marks the Primitive Compartment In AML and Regulates LSC Numbers. Blood, 2010, 116, 94-94.	1.4	1
168	Reprogramming T Lymphocytes for Melanoma Adoptive Immunotherapy by T-Cell Receptor Gene Transfer with Lentiviral Vectors. Cancer Research, 2009, 69, 9385-9394.	0.9	55
169	Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models. Molecular Therapy, 2009, 17, 1073-1082.	8.2	77
170	Monitoring disease evolution and treatment response in lysosomal disorders by the peripheral benzodiazepine receptor ligand PK11195. Neurobiology of Disease, 2009, 34, 51-62.	4.4	12
171	Tie2-expressing monocytes (TEMs): Novel targets and vehicles of anticancer therapy?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 5-10.	7.4	43
172	Characterization of new arylsulfatase A gene mutations reinforces genotype-phenotype correlation in metachromatic leukodystrophy. Human Mutation, 2009, 30, E936-E945.	2.5	27
173	Development and maturation of invariant NKT cells in the presence of lysosomal engulfment. European Journal of Immunology, 2009, 39, 2748-2754.	2.9	14
174	Quantitative proteomic analysis of lentiviral vectors using 2â€DE. Proteomics, 2009, 9, 3666-3676.	2.2	25
175	Comprehensive genomic access to vector integration in clinical gene therapy. Nature Medicine, 2009, 15, 1431-1436.	30.7	173
176	Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 2009, 6, 63-66.	19.0	301
177	Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neuroscience, 2009, 12, 259-267.	14.8	415
178	Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nature Reviews Genetics, 2009, 10, 578-585.	16.3	362
179	Regulated and Multiple miRNA and siRNA Delivery Into Primary Cells by a Lentiviral Platform. Molecular Therapy, 2009, 17, 1039-1052.	8.2	83
180	A Comeback for Gene Therapy. Science, 2009, 326, 805-806.	12.6	56

#	Article	IF	CITATIONS
181	Short-Term Culture of Human CD34+ Cells for Lentiviral Gene Transfer. Methods in Molecular Biology, 2009, 506, 59-70.	0.9	12
182	A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident―monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 2009, 114, 901-914.	1.4	306
183	Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy. Blood, 2009, 114, 3546-3556.	1.4	65
184	In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood, 2009, 114, 5152-5161.	1.4	128
185	The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. Journal of Clinical Investigation, 2009, 119, 964-975.	8.2	488
186	From TCR Gene Transfer to TCR Gene Editing of Central Memory T Lymphocytes for Immunotherapy of Leukemia Blood, 2009, 114, 374-374.	1.4	1
187	Lentiviral Vector Gene Transfer Is Limited by the Proteasome at Postentry Steps in Various Types of Stem Cells. Stem Cells, 2008, 26, 2142-2152.	3.2	51
188	Tumor-Targeted Interferon-α Delivery by Tie2-Expressing Monocytes Inhibits Tumor Growth and Metastasis. Cancer Cell, 2008, 14, 299-311.	16.8	267
189	Generation of Potent and Stable Human CD4+ T Regulatory Cells by Activation-independent Expression of FOXP3. Molecular Therapy, 2008, 16, 194-202.	8.2	206
190	Good News on the Clinical Gene Transfer Front. Human Gene Therapy, 2008, 19, 429-430.	2.7	7
191	T Cell Receptor Gene Transfer into Naive and Central Memory Lymphocytes by Lentiviral Vectors for a Safe and Effective Adoptive Immune Therapy of Leukemia. Blood, 2008, 112, 3529-3529.	1.4	0
192	High Levels of MicroRNA-126 Bioactivity Specify the LSC Compartment in AML. Blood, 2008, 112, 510-510.	1.4	0
193	Novel candidate disease for gene therapy: metachromatic leukodystrophy. Expert Opinion on Biological Therapy, 2007, 7, 1193-1205.	3.1	9
194	Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood, 2007, 109, 5276-5285.	1.4	451
195	Tie2-Expressing Monocytes and Tumor Angiogenesis: Regulation by Hypoxia and Angiopoietin-2. Cancer Research, 2007, 67, 8429-8432.	0.9	240
196	SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochemical Journal, 2007, 403, 305-312.	3.7	69
197	In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood, 2007, 109, 2797-2805.	1.4	168
198	The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells. Blood, 2007, 110, 1788-1796.	1.4	35

#	Article	IF	CITATIONS
199	A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood, 2007, 110, 4144-4152.	1.4	246
200	Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends in Immunology, 2007, 28, 519-524.	6.8	255
201	Safety of Arylsulfatase A Overexpression for Gene Therapy of Metachromatic Leukodystrophy. Human Gene Therapy, 2007, 18, 821-836.	2.7	47
202	Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnology, 2007, 25, 1298-1306.	17.5	797
203	Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nature Biotechnology, 2007, 25, 1457-1467.	17.5	539
204	Gene Therapy of Lysosomal Storage Disorders by Lentiviral Vectors. , 2007, , 133-151.		0
205	Long-Term Phenotypic Correction of Hemophilia A Mice Following Intravenous Injection of miRNA-Regulated Lentiviral Vectors Blood, 2007, 110, 2587-2587.	1.4	0
206	Limited Transgene Immune Response and Long-Term Expression of Humanα-L-Iduronidase in Young Adult Mice with Mucopolysaccharidosis Type I by Liver-Directed Gene Therapy. Human Gene Therapy, 2006, 17, 1112-1121.	2.7	48
207	Efficacy of Gene Therapy for Wiskott-Aldrich Syndrome Using a WAS Promoter/cDNA-Containing Lentiviral Vector and Nonlethal Irradiation. Human Gene Therapy, 2006, 17, 303-313.	2.7	82
208	Lentiviral gene transfer ameliorates disease progression in Long-Evans cinnamon rats: An animal model for Wilson disease. Scandinavian Journal of Gastroenterology, 2006, 41, 974-982.	1.5	51
209	Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood, 2006, 107, 4257-4265.	1.4	73
210	Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)–deficient mice and corrects their immune and metabolic defects. Blood, 2006, 108, 2979-2988.	1.4	76
211	ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. Journal of Biology, 2006, 5, 14.	2.7	185
212	Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nature Biotechnology, 2006, 24, 687-696.	17.5	648
213	Inserting optimism into gene therapy. Nature Medicine, 2006, 12, 386-388.	30.7	13
214	Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nature Medicine, 2006, 12, 585-591.	30.7	460
215	Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1766, 159-166.	7.4	63
216	MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Research, 2006, 66, 4750-4757.	0.9	123

#	Article	IF	CITATIONS
217	738. Towards Gene Correction of X-Linked SCID Using Engineered Zinc Finger Nucleases and Integrase Defective Lentiviral Delivery. Molecular Therapy, 2006, 13, S285.	8.2	1
218	408. Safety of Lysosomal Enzymes Over-Expression in HSC for Gene Therapy of Storage Disorders. Molecular Therapy, 2006, 13, S157.	8.2	0
219	891. Correction of Established Neurologic Disease and Evidences of In Vivo Cross Correction in the Mouse Model of Metachromatic Leukodystrophy. Molecular Therapy, 2006, 13, S343.	8.2	0
220	888. Characterization of New Murine Models of Globoid Cell Leukodystrophy: Relevance for Gene Therapy Applications and Studies on Disease Pathogenesis. Molecular Therapy, 2006, 13, S342.	8.2	0
221	57. Targeted Gene Delivery of Alpha-Interferon by Genetically Modified Hematopoietic Cells Inhibits Glioma Vascularization and Growth without Systemic Toxicity. Molecular Therapy, 2006, 13, S24.	8.2	0
222	731. Hematopoietic Stem Cell Gene Transfer and Integration Site Analysis in Tumor-Prone Mice Uncovers Low Genotoxicity of Lentiviral Vector Integration. Molecular Therapy, 2006, 13, S282.	8.2	0
223	803. Endogenous microRNA Regulation Suppresses Transgene Expression in Hematopoietic Lineages and Enables Stable Gene Transfer. Molecular Therapy, 2006, 13, S311.	8.2	0
224	Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. Journal of Clinical Investigation, 2006, 116, 3070-3082.	8.2	197
225	Retroviral vectors containing Tet-controlled bidirectional transcription units for simultaneous regulation of two gene activities. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2006, 02, 107-18.	0.1	14
226	Efficacy of Gene Therapy for Wiskott-Aldrich Syndrome Using a WAS Promoter/cDNA-Containing Lentiviral Vector and Nonlethal Irradiation. Human Gene Therapy, 2006, .	2.7	0
227	Evidence for Efficacy and Safety of Lentiviral Mediated Gene Transfer in T Cells and CD34+ Cells from Wiskott-Aldrich Syndrome Patients Blood, 2006, 108, 3279-3279.	1.4	0
228	Modeling the Genotoxicity of Viral Vector Integration in a Tumor Prone Hematopoietic Stem Cell Transplantation Model Blood, 2006, 108, 451-451.	1.4	0
229	Treatment of the mouse model of mucopolysaccharidosis type IIIB with lentiviral-NAGLU vector. Biochemical Journal, 2005, 388, 639-646.	3.7	56
230	Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood, 2005, 105, 2307-2315.	1.4	164
231	Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nature Biotechnology, 2005, 23, 108-116.	17.5	293
232	RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis. Cancer Gene Therapy, 2005, 12, 456-463.	4.6	34
233	The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature, 2005, 434, 396-400.	27.8	245
234	Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 2005, 8, 211-226.	16.8	1,212

#	Article	IF	CITATIONS
235	Gene Therapy of Storage Disorders by Retroviral and Lentiviral Vectors. Human Gene Therapy, 2005, 16, 1133-1142.	2.7	39
236	Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses. Human Gene Therapy, 2005, 16, 741-751.	2.7	137
237	Erratum to "Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction― Molecular Therapy, 2005, 11, 492.	8.2	0
238	Efficient Tet-Dependent Expression of Human Factor IX in Vivo by a New Self-Regulating Lentiviral Vector. Molecular Therapy, 2005, 11, 763-775.	8.2	61
239	Lentiviral Transduction of Primary Myeloma Cells with CD80 and CD154 Generates Antimyeloma Effector T Cells. Human Gene Therapy, 2005, 16, 445-456.	2.7	5
240	Axons mediate the distribution of arylsulfatase a within the mouse hippocampus upon gene delivery. Molecular Therapy, 2005, 12, 669-679.	8.2	52
241	Gene Therapy for a Mucopolysaccharidosis Type I Murine Model with Lentiviral-IDUA Vector. Human Gene Therapy, 2005, 16, 81-90.	2.7	72
242	Cleavage of the Plasma Membrane Na+/Ca2+ Exchanger in Excitotoxicity. Cell, 2005, 120, 275-285.	28.9	511
243	Gene Therapy of Storage Disorders by Retroviral and Lentiviral Vectors. Human Gene Therapy, 2005, .	2.7	0
244	Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14835-14840.	7.1	163
245	Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell, 2004, 6, 61-73.	16.8	282
246	Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction. Molecular Therapy, 2004, 10, 903-915.	8.2	106
247	Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood, 2004, 103, 3700-3709.	1.4	206
248	Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. Journal of Clinical Investigation, 2004, 113, 1118-1129.	8.2	117
249	Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. Journal of Clinical Investigation, 2004, 113, 1118-1129.	8.2	256
250	An uncleavable form of pro–scatter factor suppresses tumor growth and dissemination in mice. Journal of Clinical Investigation, 2004, 114, 1418-1432.	8.2	85
251	Efficiency of Onco-Retroviral and Lentiviral Gene Transfer into Primary Mouse and Human B-Lymphocytes Is Pseudotype Dependent. Human Gene Therapy, 2003, 14, 263-276.	2.7	44
252	â€~Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Therapy, 2003, 10, 630-636.	4.5	109

#	Article	IF	CITATIONS
253	Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Medicine, 2003, 9, 789-795.	30.7	539
254	Deletion in a (T)8 microsatellite abrogates expression regulation by 3'-UTR. Nucleic Acids Research, 2003, 31, 6561-6569.	14.5	30
255	In VivoTargeting of Tumor Endothelial Cells by Systemic Delivery of Lentiviral Vectors. Human Gene Therapy, 2003, 14, 1193-1206.	2.7	114
256	Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood, 2003, 102, 497-505.	1.4	142
257	HIV-Based Vectors: Preparation and Use. , 2002, , 259-274.		44
258	Transcriptional Targeting of Lentiviral Vectors by Long Terminal Repeat Enhancer Replacement. Journal of Virology, 2002, 76, 3996-4007.	3.4	52
259	Robust and Efficient Regulation of Transgene Expression in Vivo by Improved Tetracycline-Dependent Lentiviral Vectors. Molecular Therapy, 2002, 5, 252-261.	8.2	145
260	[33] Oncoretroviral and lentiviral vector-mediated gene therapy. Methods in Enzymology, 2002, 346, 573-589.	1.0	34
261	Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Blood, 2002, 100, 4391-4400.	1.4	84
262	Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood, 2002, 100, 813-822.	1.4	240
263	Correction of mucopolysaccharidosis type IIIb fibroblasts by lentiviral vector-mediated gene transfer. Biochemical Journal, 2002, 364, 747-753.	3.7	20
264	[29] Transduction of a gene expression cassette using advanced generation lentiviral vectors. Methods in Enzymology, 2002, 346, 514-529.	1.0	78
265	Molecular Evidence of Lentiviral Vector-Mediated Gene Transfer into Human Self-Renewing, Multi-potent, Long-Term NOD/SCID Repopulating Hematopoietic Cells. Molecular Therapy, 2002, 6, 615-626.	8.2	20
266	Efficient Gene Delivery and Targeted Expression to HepatocytesIn Vivoby Improved Lentiviral Vectors. Human Gene Therapy, 2002, 13, 243-260.	2.7	230
267	[26] Generation of HIV-1 derived lentiviral vectors. Methods in Enzymology, 2002, 346, 454-465.	1.0	178
268	A Human Immunodeficiency Virus Type 1polGene-Derived Sequence (cPPT/CTS) Increases the Efficiency of Transduction of Human Nondividing Monocytes and T Lymphocytes by Lentiviral Vectors. Human Gene Therapy, 2002, 13, 1793-1807.	2.7	56
269	In vitrogene therapy of mucopolysaccharidosis type I by lentiviral vectors. FEBS Journal, 2002, 269, 2764-2771.	0.2	15
270	Lentivirus-mediated gene transfer into hematopoietic repopulating cells in baboons. Gene Therapy, 2002, 9, 1464-1471.	4.5	57

#	Article	IF	CITATIONS
271	HIV-based vectors. Preparation and use. Methods in Molecular Medicine, 2002, 69, 259-74.	0.8	89
272	Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Molecular Therapy, 2002, 6, 615-26.	8.2	25
273	A New-Generation Stable Inducible Packaging Cell Line for Lentiviral Vectors. Human Gene Therapy, 2001, 12, 981-997.	2.7	149
274	Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Medicine, 2001, 7, 33-40.	30.7	1,205
275	In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nature Medicine, 2001, 7, 310-316.	30.7	198
276	Development of lentiviral vectors for antiangiogenic gene delivery. Cancer Gene Therapy, 2001, 8, 879-889.	4.6	58
277	Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10733-10738.	7.1	357
278	Hepatocyte Growth Factor Is a Regulator of Monocyte-Macrophage Function. Journal of Immunology, 2001, 166, 1241-1247.	0.8	129
279	Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. Journal of Gene Medicine, 2000, 2, 308-316.	2.8	318
280	Efficient lentiviral transduction of liver requires cell cycling in vivo. Nature Genetics, 2000, 24, 49-52.	21.4	278
281	Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genetics, 2000, 25, 217-222.	21.4	887
282	Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo. Gene Therapy, 2000, 7, 568-574.	4.5	105
283	Transduction of Human CD34+CD38- Bone Marrow and Cord Blood-Derived SCID-Repopulating Cells with Third-Generation Lentiviral Vectors. Molecular Therapy, 2000, 1, 566-573.	8.2	180
284	Lentiviral vectors. Advances in Virus Research, 2000, 55, 599-609.	2.1	88
285	Intracerebral Gene Transfer Using Viral Vectors. Neuromethods, 2000, , 103-130.	0.3	2
286	Stable transduction of quiescent CD34 ⁺ CD38 ^{â^'} human hematopoietic cells by HIV-1-based lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2988-2993.	7.1	395
287	In Vivo Gene Delivery by Lentiviral Vectors. Thrombosis and Haemostasis, 1999, 82, 552-554.	3.4	18
288	Interaction of Human Immunodeficiency Virus-Derived Vectors with Wild-Type Virus in Transduced Cells. Journal of Virology, 1999, 73, 7087-7092.	3.4	108

#	Article	IF	CITATIONS
289	Lentiviruses as gene transfer agents for delivery to non-dividing cells. Current Opinion in Biotechnology, 1998, 9, 457-463.	6.6	269
290	A Third-Generation Lentivirus Vector with a Conditional Packaging System. Journal of Virology, 1998, 72, 8463-8471.	3.4	2,931
291	Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery. Journal of Virology, 1998, 72, 9873-9880.	3.4	1,676
292	Lentiviral Vectors for Gene Delivery in the Nervous System. , 1998, , 113-120.		0
293	Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnology, 1997, 15, 871-875.	17.5	1,826
294	In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector. Science, 1996, 272, 263-267.	12.6	4,589
295	Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11382-11388.	7.1	1,420
296	Biological Activation of pro-HGF (Hepatocyte Growth Factor) by Urokinase Is Controlled by a Stoichiometric Reaction. Journal of Biological Chemistry, 1995, 270, 603-611.	3.4	232
297	Solubilization and Characterization of the Receptor for Gastrin-Releasing Peptide. Methods in Neurosciences, 1993, 11, 398-413.	0.5	0
298	Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth Journal of Cell Biology, 1992, 119, 629-641.	5.2	1,282
299	A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11574-11578.	7.1	219
300	Solubilization of the receptor for the neuropeptide gastrin-releasing peptide (bombesin) with functional ligand binding properties. Biochemistry, 1990, 29, 5153-5160.	2.5	25
301	Characterization of the detergent solubilized receptor for gastrin-releasing peptide. Peptides, 1990, 11, 737-745.	2.4	3
302	Identification of the Bombesin Receptor on Murine and Human Cells by Cross-Linking Experiments. Annals of the New York Academy of Sciences, 1988, 547, 474-476.	3.8	0
303	The tyrosine kinase associated with the bombesin receptor complex: Evidences for autocrine activation in small cell lung carcinomas. Lung Cancer, 1988, 4, 190-195.	2.0	1
304	Activation of the protein-tyrosine kinase associated with the bombesin receptor complex in small cell lung carcinomas Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2166-2170.	7.1	37
305	Proteins phosphorylated on tyrosine as markers of human tumor cell lines. International Journal of Cancer, 1987, 39, 482-487.	5.1	18
306	In vivo phosphorylation and dephosphorylation of the platelet-derived growth factor receptor studied by immunoblot analysis with phosphotyrosine antibodies. Biochimica Et Biophysica Acta - General Subjects, 1986, 881, 54-61.	2.4	49

#	Article	IF	CITATIONS
307	Protein phosphorylation at tyrosine residues INv-abl transformed mouse lymphocytes and fibroblasts. International Journal of Cancer, 1986, 37, 623-628.	5.1	12
308	Immunological detection of proteins phosphorylated at tyrosine in cells stimulated by growth factors or transformed by retroviral-oncogene-coded tyrosine kinases. FEBS Journal, 1986, 158, 383-391.	0.2	36
309	Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures Journal of Cell Biology, 1984, 99, 1696-1705.	5.2	303
310	Microtubules and microfilaments in fixed and permeabilized cells are selectively decorated by nerve growth factor Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 820-824.	7.1	11
311	Distribution of nerve growth factor in chick embryo sympathetic neuronsin vitro. Journal of Neurocytology, 1981, 10, 45-55.	1.5	10
312	Intracellular distribution of nerve growth factor in rat pheochromocytoma PC12 cells: evidence for a perinuclear and intranuclear location Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 1656-1660.	7.1	57