
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dorsal Root Ganglion Neurons Innervating Skeletal Muscle Respond to Physiological Combinations of Protons, ATP, and Lactate Mediated by ASIC, P2X, and TRPV1. Journal of Neurophysiology, 2008, 100, 1184-1201.	1.8	246
2	Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB Journal, 2014, 28, 3197-3204.	0.5	164
3	Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiology of Aging, 2014, 35, 1286-1292.	3.1	146
4	Lovastatin enhances AÎ ² production and senile plaque deposition in female Tg2576 mice. Neurobiology of Aging, 2003, 24, 637-643.	3.1	131
5	N-(3-Acyloxy-2-benzylpropyl)-Nâ€~-[4-(methylsulfonylamino)benzyl]thiourea Analogues: Novel Potent and High Affinity Antagonists and Partial Antagonists of the Vanilloid Receptor. Journal of Medicinal Chemistry, 2003, 46, 3116-3126.	6.4	110
6	High Affinity Antagonists of the Vanilloid Receptor. Molecular Pharmacology, 2002, 62, 947-956.	2.3	97
7	Diacylglycerol (DAG)-lactones, a New Class of Protein Kinase C (PKC) Agonists, Induce Apoptosis in LNCaP Prostate Cancer Cells by Selective Activation of PKCα. Journal of Biological Chemistry, 2002, 277, 645-655.	3.4	88
8	Conformationally Constrained Analogues of Diacylglycerol (DAG). 16.1How Much Structural Complexity Is Necessary for Recognition and High Binding Affinity to Protein Kinase C?. Journal of Medicinal Chemistry, 2000, 43, 921-944.	6.4	75
9	Calcium-dependent and independent mechanisms of capsaicin receptor (TRPV1)-mediated cytokine production and cell death in human bronchial epithelial cells. Journal of Biochemical and Molecular Toxicology, 2005, 19, 266-275.	3.0	74
10	Transient receptor potential vanilloid type 1 antagonists: a patent review (2011 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 291-318.	5.0	65
11	Inhibition of Mouse Skin Tumor Promotion by Anti-Inflammatory Diarylheptanoids Derived From <i>Alpinia oxyphylla</i> Miquel (Zingiberaceae). Oncology Research, 2002, 13, 37-45.	1.5	64
12	Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies. Journal of Computer-Aided Molecular Design, 2011, 25, 317-327.	2.9	64
13	Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Scientific Reports, 2018, 8, 6409.	3.3	64
14	Distinct structure-activity relations for stimulation of 45Ca uptake and for high affinity binding in cultured rat dorsal root ganglion neurons and dorsal root ganglion membranes. Molecular Brain Research, 1996, 35, 173-182.	2.3	63
15	Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). European Journal of Medicinal Chemistry, 2014, 79, 128-142.	5.5	60
16	Curcumin suppresses oncogenicity of human colon cancer cells by covalently modifying the cysteine 67 residue of SIRT1. Cancer Letters, 2018, 431, 219-229.	7.2	60
17	Transient Receptor Potential Vanilloid-1 (TRPV1) Is a Mediator of Lung Toxicity for Coal Fly Ash Particulate Material. Molecular Pharmacology, 2012, 81, 411-419.	2.3	58
18	A two-photon fluorescent probe for amyloid-β plaques in living mice. Chemical Communications, 2013, 49, 1303.	4.1	54

#	Article	IF	CITATIONS
19	Intracellular Amyloid-β Accumulation in Calcium-Binding Protein-Deficient Neurons Leads to Amyloid-β Plaque Formation in Animal Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 29, 615-628.	2.6	53
20	Ligand-Based Design, Synthesis, and Biological Evaluation of 2-Aminopyrimidines, a Novel Series of Receptor for Advanced Glycation End Products (RAGE) Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 9120-9135.	6.4	52
21	Anti-tumor promoting potential of naturally occurring diarylheptanoids structurally related to curcumin. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 428, 49-57.	1.0	49
22	N-(3-acyloxy-2-benzylpropyl)-N′-(4-hydroxy-3-methoxybenzyl)thiourea derivatives as potent vanilloid receptor agonists and analgesics. Bioorganic and Medicinal Chemistry, 2001, 9, 19-32.	3.0	49
23	Conformationally Constrained Analogues of Diacylglycerol. 10. Ultrapotent Protein Kinase C Ligands Based on a Racemic 5-Disubstituted Tetrahydro-2-furanone Template1. Journal of Medicinal Chemistry, 1996, 39, 19-28.	6.4	44
24	Different vanilloid agonists cause different patterns of calcium response in CHO cells heterologously expressing rat TRPV1. Life Sciences, 2005, 76, 2921-2932.	4.3	44
25	Methionyl adenylate analogues as inhibitors of methionyl-tRNA synthetase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1365-1370.	2.2	42
26	Deguelin Analogue SH-1242 Inhibits Hsp90 Activity and Exerts Potent Anticancer Efficacy with Limited Neurotoxicity. Cancer Research, 2016, 76, 686-699.	0.9	41
27	Protein Kinase C. Modeling of the Binding Site and Prediction of Binding Constants. Journal of Medicinal Chemistry, 1994, 37, 1326-1338.	6.4	40
28	The Transition from a Pharmacophore-Guided Approach to a Receptor-Guided Approach in the Design of Potent Protein Kinase C Ligands. , 1999, 82, 251-261.		40
29	Novel Potent Antagonists of Transient Receptor Potential Channel, Vanilloid Subfamily Member 1:Â Structureâ^'Activity Relationship of 1,3-Diarylalkyl Thioureas Possessing New Vanilloid Equivalents. Journal of Medicinal Chemistry, 2005, 48, 5823-5836.	6.4	40
30	Conformationally Constrained Analogues of Diacylglycerol. 29. Cells Sort Diacylglycerol-Lactone Chemical Zip Codes to Produce Diverse and Selective Biological Activities. Journal of Medicinal Chemistry, 2008, 51, 5198-5220.	6.4	40
31	Structure-Activity Relationship of Capsaicin Analogs and Transient Receptor Potential Vanilloid 1-Mediated Human Lung Epithelial Cell Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 400-410.	2.5	40
32	Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L111-L119.	2.9	39
33	N-Alkoxysulfamide, N-hydroxysulfamide, and sulfamate analogues of methionyl and isoleucyl adenylates as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1087-1092.	2.2	38
34	High-Affinity Partial Agonists of the Vanilloid Receptor. Molecular Pharmacology, 2003, 64, 325-333.	2.3	38
35	Synthesis and Evaluation of a Novel Deguelin Derivative, L80, which Disrupts ATP Binding to the C-terminal Domain of Heat Shock Protein 90. Molecular Pharmacology, 2015, 88, 245-255.	2.3	38
36	Conformationally Constrained Analogues of Diacylglycerol. 11.1Ultrapotent Protein Kinase C Ligands Based on a Chiral 5-Disubstituted Tetrahydro-2-furanone Template. Journal of Medicinal Chemistry, 1996, 39, 29-35.	6.4	37

#	Article	IF	CITATIONS
37	Novel non-vanilloid VR1 antagonist of high analgesic effects and its structural requirement for VR1 antagonistic effects. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4389-4393.	2.2	36
38	2-(3-Fluoro-4-methylsulfonylaminophenyl)propanamides as Potent Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists: Structure–Activity Relationships of 2-Amino Derivatives in the <i>N</i> -(6-Trifluoromethylpyridin-3-ylmethyl) C-Region. Journal of Medicinal Chemistry, 2012, 55, 8392-8408.	6.4	36
39	Hypoxia-mediated retinal neovascularization and vascular leakage in diabetic retina is suppressed by HIF-1α destabilization by SH-1242 and SH-1280, novel hsp90 inhibitors. Journal of Molecular Medicine, 2014, 92, 1083-1092.	3.9	36
40	Conformationally Constrained Analogues of Diacylglycerol. 12.1Ultrapotent Protein Kinase C Ligands Based on a Chiral 4,4-Disubstituted Heptono-1,4-lactone Template. Journal of Medicinal Chemistry, 1996, 39, 36-45.	6.4	35
41	Kinetics of Penetration Influence the Apparent Potency of Vanilloids on TRPV1. Molecular Pharmacology, 2006, 69, 1166-1173.	2.3	34
42	C-terminal HSP90 inhibitor L80 elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Cancer Letters, 2019, 447, 141-153.	7.2	34
43	N -[4-(Methylsulfonylamino)benzyl]thiourea analogues as vanilloid receptor antagonists: analysis of structure–activity relationships for the â€~C-Region'. Bioorganic and Medicinal Chemistry, 2004, 12, 371-385.	3.0	33
44	Structure–activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl)propyl thiourea template. Bioorganic and Medicinal Chemistry, 2013, 21, 3821-3830.	3.0	33
45	Discovery of Potent Human Glutaminyl Cyclase Inhibitors as Anti-Alzheimer's Agents Based on Rational Design. Journal of Medicinal Chemistry, 2017, 60, 2573-2590.	6.4	33
46	Comparative Effects of Curcumin and Tetrahydrocurcumin on Dextran Sulfate Sodium-induced Colitis and Inflammatory Signaling in Mice. Journal of Cancer Prevention, 2018, 23, 18-24.	2.0	32
47	Conformationally Constrained Analogues of Diacylglycerol. 24. Asymmetric Synthesis of a Chiral (R)-DAG-Lactone Template as a Versatile Precursor for Highly Functionalized DAG-Lactones. Organic Letters, 2004, 6, 2413-2416.	4.6	31
48	Ester and hydroxamate analogues of methionyl and isoleucyl adenylates as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 961-964.	2.2	30
49	Stereospecific High-affinity TRPV1 Antagonists: Chiral N-(2-Benzyl-3-pivaloyloxypropyl) 2-[4-(methylsulfonylamino)phenyl]propionamide Analogues. Journal of Medicinal Chemistry, 2008, 51, 57-67.	6.4	30
50	Aminopropyl carbazole analogues as potent enhancers of neurogenesis. Bioorganic and Medicinal Chemistry, 2013, 21, 7165-7174.	3.0	30
51	Discovery of an Orally Bioavailable Benzofuran Analogue That Serves as a β-Amyloid Aggregation Inhibitor for the Potential Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2018, 61, 396-402.	6.4	30
52	Novel Hypoxia-Inducible Factor 1α (HIF-1α) Inhibitors for Angiogenesis-Related Ocular Diseases: Discovery of a Novel Scaffold via Ring-Truncation Strategy. Journal of Medicinal Chemistry, 2018, 61, 9266-9286.	6.4	30
53	N-4-Substituted-benzyl-N′-tert-butylbenzyl thioureas as vanilloid receptor ligands: investigation on the role of methanesulfonamido group in antagonistic activity. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 787-791.	2.2	29
54	A novel HSP90 inhibitor targeting the C-terminal domain attenuates trastuzumab resistance in HER2-positive breast cancer. Molecular Cancer, 2020, 19, 161.	19.2	27

#	Article	IF	CITATIONS
55	Synthesis and evaluation of fluorine-substituted 1H-pyrrolo[2,3-b]pyridine derivatives for dopamine D4 receptor imaging. Bioorganic and Medicinal Chemistry, 2004, 12, 5505-5513.	3.0	26
56	Discovery of dual-acting opioid ligand and TRPV1 antagonists as novel therapeutic agents for pain. European Journal of Medicinal Chemistry, 2019, 182, 111634.	5.5	26
57	α-Substituted N-(4-tert-butylbenzyl)-N′-[4-(methylsulfonylamino)benzyl]thiourea analogues as potent and stereospecific TRPV1 antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 6043-6053.	3.0	25
58	2-[2-Substituted-3-(3,4-dichlorobenzylamino)propylamino]-1H-quinolin-4-ones as Staphylococcus aureus methionyl-tRNA synthetase inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 239-250.	5.5	25
59	Resiniferatoxinâ€Amide and Analogues as Ligands for Protein Kinase C and Vanilloid Receptors and Determination of Their Biological Activities as Vanilloids. Journal of Neurochemistry, 1995, 65, 301-308.	3.9	24
60	Ring-truncated deguelin derivatives as potent Hypoxia Inducible Factor-1α (HIF-1α) inhibitors. European Journal of Medicinal Chemistry, 2015, 104, 157-164.	5.5	24
61	Synthesis and biological evaluation of C-ring truncated deguelin derivatives as heat shock protein 90 (HSP90) inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 6082-6093.	3.0	24
62	Vanilloid and isovanilloid analogues as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 965-968.	2.2	23
63	Macrocyclic Diacylglycerol-bis-lactones as Conformationally Constrained Analogues of Diacylglycerol-lactones. Interactions with Protein Kinase C. Journal of Medicinal Chemistry, 2004, 47, 4000-4007.	6.4	23
64	Development of a novel Hsp90 inhibitor NCT-50 as a potential anticancer agent for the treatment of non-small cell lung cancer. Scientific Reports, 2018, 8, 13924.	3.3	23
65	A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-β-catenin signaling-mediated drug resistance and adverse effects. Theranostics, 2022, 12, 105-125.	10.0	23
66	N-(3-Acyloxy-2-Benzylpropyl)-N′-Dihydroxytetrahydrobenzazepine and Tetrahydroisoquinoline Thiourea Analogues as Vanilloid Receptor Ligands. Bioorganic and Medicinal Chemistry, 2001, 9, 1713-1720.	3.0	22
67	Deoxyribosyl analogues of methionyl and isoleucyl sulfamate adenylates as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3389-3393.	2.2	22
68	Design and synthesis of quinolinones as methionyl-tRNA synthetase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 7154-7159.	3.0	22
69	TRPV1 Activation is Not An All-Or-None Event: TRPV1 Partial Agonism/Antagonism and Its Regulatory Modulation. Current Topics in Medicinal Chemistry, 2011, 11, 2151-2158.	2.1	22
70	Characterization of AJH-836, a diacylglycerol-lactone with selectivity for novel PKC isozymes. Journal of Biological Chemistry, 2018, 293, 8330-8341.	3.4	22
71	Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Scientific Reports, 2019, 9, 6041.	3.3	22
72	Synthesis of N,N′,N″-trisubstituted thiourea derivatives and their antagonist effect on the vanilloid receptor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 601-604.	2.2	21

#	Article	IF	CITATIONS
73	Pharmacophore-based virtual screening: The discovery of novel methionyl-tRNA synthetase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4898-4907.	2.2	21
74	2-(3-Fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists: Structure activity relationships of the 2-oxy pyridine C-region. European Journal of Medicinal Chemistry, 2013, 64, 589-602.	5.5	21
75	TRPV1 antagonist with high analgesic efficacy: 2-Thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides. Bioorganic and Medicinal Chemistry, 2013, 21, 6657-6664.	3.0	20
76	Discovery of Nonpungent Transient Receptor Potential Vanilloid 1 (TRPV1) Agonist as Strong Topical Analgesic. Journal of Medicinal Chemistry, 2020, 63, 418-424.	6.4	20
77	Conformationally constrained analogues of diacylglycerol (DAG). Effect on protein kinase C (PK-C) binding by the isosteric replacement of sn-1 and sn-2 esters in DAG-lactones. Bioorganic and Medicinal Chemistry, 2003, 11, 2529-2539.	3.0	19
78	Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer's agents: Structure-activity relationship study of Arg-mimetic region. Bioorganic and Medicinal Chemistry, 2018, 26, 1035-1049.	3.0	19
79	Conformationally Constrained Analogues of Diacylglycerol. 19. Synthesis and Protein Kinase C Binding Affinity of Diacylglycerol Lactones Bearing an N-Hydroxylamide Side Chain. Journal of Medicinal Chemistry, 2003, 46, 2790-2793.	6.4	18
80	Analysis of structure–activity relationships for the â€~A-region' of N-(4-t-butylbenzyl)-Nâ€2-[4-(methylsulfonylamino)benzyl]thiourea analogues as TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4136-4142.	2.2	18
81	3-Acyloxy-2-phenalkylpropyl amides and esters of homovanillic acid as novel vanilloid receptor agonists. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2909-2914.	2.2	17
82	Structural anatomy of Protein Kinase C C1 domain interactions with diacylglycerol and other agonists. Nature Communications, 2022, 13, 2695.	12.8	17
83	Conformationally constrained analogues of diacylglycerol (DAG). 14.1 Dissection of the roles of the sn-1 and sn-2 carbonyls in DAG mimetics by isopharma cophore replacement. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1757-1762.	2.2	16
84	A simple and efficient in vitro method for metabolism studies of radiotracers. Nuclear Medicine and Biology, 2001, 28, 391-395.	0.6	16
85	Conformationally Constrained Analogues of Diacylglycerol. 18. The Incorporation of a Hydroxamate Moiety into Diacylglycerol-Lactones Reduces Lipophilicity and Helps Discriminate between sn-1 and sn-2 Binding Modes to Protein Kinase C (PK-C). Implications for Isozyme Specificity. Journal of Medicinal Chemistry. 2001. 44. 4309-4312.	6.4	16
86	Synthesis of 2-substituted-pyrrolidinethiourea derivatives and their antagonist effect on vanilloid receptor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 197-200.	2.2	16
87	Differential modulation of agonist and antagonist structure activity relations for rat TRPV1 by cyclosporin A and other protein phosphatase inhibitors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 149-157.	3.0	16
88	2-Aryl substituted pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as highly potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4044-4047.	2.2	16
89	Discovery of (S)-4-isobutyloxazolidin-2-one as a novel leucyl-tRNA synthetase (LRS)-targeted mTORC1 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3038-3041.	2.2	16
90	Discovery of a Small Molecule that Enhances Astrocytogenesis by Activation of STAT3, SMAD1/5/8, and ERK1/2 via Induction of Cytokines in Neural Stem Cells. ACS Chemical Neuroscience, 2016, 7, 90-99.	3.5	16

#	Article	IF	CITATIONS
91	Discovery of simplified leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 4145-4152.	3.0	16
92	Pyrazole C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4383-4388.	2.2	16
93	Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 3133-3144.	3.0	16
94	Discovery of Conformationally Restricted Human Glutaminyl Cyclase Inhibitors as Potent Anti-Alzheimer's Agents by Structure-Based Design. Journal of Medicinal Chemistry, 2019, 62, 8011-8027.	6.4	16
95	Differential effects of MEK inhibitors on rat neural stem cell differentiation: Repressive roles of MEK2 in neurogenesis and induction of astrocytogenesis by PD98059. Pharmacological Research, 2019, 149, 104466.	7.1	16
96	Investigation of B,C-ring truncated deguelin derivatives as heat shock protein 90 (HSP90) inhibitors for use as anti-breast cancer agents. Bioorganic and Medicinal Chemistry, 2019, 27, 1370-1381.	3.0	16
97	Discovery of a simplified deguelin analog as an HSP90 C-terminal inhibitor for HER2-positive breast cancer. Bioorganic and Medicinal Chemistry Letters, 2021, 45, 128134.	2.2	16
98	Methionine analogues as inhibitors of methionyl-tRNA synthetase. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3511-3514.	2.2	15
99	Synthesis and biological evaluation of 1-(4-[18f]fluorobenzyl)-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine for in vivo studies of acetylcholinesterase. Nuclear Medicine and Biology, 2000, 27, 741-744.	0.6	15
100	2-Benzyl and 2-phenyl-3-hydroxypropyl pivalates as protein kinase C ligands. Bioorganic and Medicinal Chemistry, 2006, 14, 2022-2031.	3.0	15
101	2-Alkyl/alkenyl substituted pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as highly potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4039-4043.	2.2	15
102	Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist. Journal of Medicinal Chemistry, 2016, 59, 9150-9172.	6.4	15
103	Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10322-10328.	6.4	15
104	Conformationally Constrained Analogues of Diacylglycerol. 13.1Protein Kinase C Ligands Based on Templates Derived from 2,3-Dideoxy-l-erythro(threo)-hexono-1,4-lactone and 2-Deoxyapiolactone. Journal of Medicinal Chemistry, 1996, 39, 4912-4919.	6.4	14
105	A comparative study of quantitative structure activity relationship methods based on antitumor diarylsulfonylureas. European Journal of Medicinal Chemistry, 2001, 36, 829-836.	5.5	14
106	Phenolic Modification as an Approach to Improve the Pharmacology of the 3-Acyloxy-2-benzylpropyl Homovanillic Amides and Thioureas, a Promising Class of Vanilloid Receptor Agonists and Analgesics. Bioorganic and Medicinal Chemistry, 2002, 10, 1171-1179.	3.0	14
107	Analysis of structure–activity relationships with the N-(3-acyloxy-2-benzylpropyl)-Nâ€2-[4-(methylsulfonylamino)benzyl]thiourea template for vanilloid receptor 1 antagonism. Bioorganic and Medicinal Chemistry, 2004, 12, 3411-3420.	3.0	14
108	Analysis of structure–activity relationships for the â€~B-region' of N-(4-t-butylbenzyl)-Nâ€2-[4-(methylsulfonylamino)benzyl]-thiourea analogues as TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4143-4150.	2.2	14

#	Article	IF	CITATIONS
109	In vitroandin silicodetermination of glutaminyl cyclase inhibitors. RSC Advances, 2019, 9, 29619-29627.	3.6	14
110	Synthesis of two rigid diacylglycerol analogues having a bis-butyrolactone skeleton. Tetrahedron Letters, 1992, 33, 1539-1542.	1.4	13
111	Analysis of structure–activity relationships for the â€~B-region' of N -(3-acyloxy-2-benzylpropyl)- N ′ -[4-(methylsulfonylamino)benzyl]thiourea analogues as vanilloid receptor antagonists: discovery of an N -hydroxythiourea analogue with potent analgesic activity. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2291-2297.	2.2	13
112	Pyridine C-region analogs of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists. European Journal of Medicinal Chemistry, 2015, 93, 101-108.	5.5	13
113	Fine tuning of 4,6-bisphenyl-2-(3-alkoxyanilino)pyrimidine focusing on the activity-sensitive aminoalkoxy moiety for a therapeutically useful inhibitor of receptor for advanced glycation end products (RAGE). Bioorganic and Medicinal Chemistry, 2015, 23, 579-587.	3.0	13
114	The C-terminal HSP90 inhibitor NCT-58 kills trastuzumab-resistant breast cancer stem-like cells. Cell Death Discovery, 2021, 7, 354.	4.7	13
115	A Facile Synthesis of an (E)-4-Methyl-4-Hexenoic Acid Substituted Pyridine Analogue of Mycophenolic Acid. Synthetic Communications, 1992, 22, 369-376.	2.1	12
116	Conformationally constrained analogues of diacylglycerol (DAG). Part 19: Asymmetric syntheses of (3R)- and (3S)-3-hydroxy-4,4-disubstituted heptono-1,4-lactones as protein kinase C (PK-C) ligands with increased hydrophilicity. Tetrahedron, 2002, 58, 5335-5345.	1.9	12
117	N-4-t-Butylbenzyl 2-(4-methylsulfonylaminophenyl) propanamide TRPV1 antagonists: Structure–activity relationships in the A-region. Bioorganic and Medicinal Chemistry, 2012, 20, 215-224.	3.0	12
118	Inhibition of Glutaminyl Cyclase Ameliorates Amyloid Pathology in an Animal Model of Alzheimer's Disease via the Modulation of γ-Secretase Activity. Journal of Alzheimer's Disease, 2014, 43, 797-807.	2.6	12
119	Conformationally constrained analogues of diacylglycerol. 6. Changes in PK-C binding affinity for 3-O-acyl-2-deoxy-L-ribonolactones bearing different acyl chains Bioorganic and Medicinal Chemistry Letters, 1994, 4, 355-360.	2.2	11
120	Synthesis and biological activities of truncated acridone: Structure-activity relationship studies of cytotoxic 5-hydroxy-4-quinolone. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 789-792.	2.2	11
121	Syntheses and antiviral activities of 1,3-dioxolanyl-, 1,3-oxathiolanyl- and 1,3-dithiolanylnucleosides with 2-hydroxymethyl substituents. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1475-1480.	2.2	11
122	Protein Kinase C Ligands Based on Tetrahydrofuran Templates Containing a New Set of Phorbol Ester Pharmacophores. Journal of Medicinal Chemistry, 1999, 42, 4129-4139.	6.4	11
123	3-D-QSAR study and molecular docking of methionyl-tRNA synthetase inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 5325-5331.	3.0	11
124	Branched Diacylglycerol-Lactones as Potent Protein Kinase C Ligands and α-Secretase Activators. Journal of Medicinal Chemistry, 2006, 49, 2028-2036.	6.4	11
125	Asymmetric synthesis and receptor activity of chiral simplified resiniferatoxin (sRTX) analogues as transient receptor potential vanilloid 1 (TRPV1) ligands. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 382-385.	2.2	11
126	α-Substituted 2-(3-fluoro-4-methylsulfonamidophenyl)acetamides as potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2326-2330.	2.2	11

#	Article	IF	CITATIONS
127	6-Phenoxy-2-phenylbenzoxazoles, novel inhibitors of receptor for advanced glycation end products (RAGE). Bioorganic and Medicinal Chemistry, 2015, 23, 4919-4935.	3.0	11
128	Discovery of N-(3-fluoro-4-methylsulfonamidomethylphenyl)urea as a potent TRPV1 antagonistic template. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3603-3607.	2.2	11
129	Discovery of novel leucyladenylate sulfamate surrogates as leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 4073-4079.	3.0	11
130	Discovery of indane propanamides as potent and selective TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126838.	2.2	11
131	An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells. Biomolecules and Therapeutics, 2015, 23, 313-319.	2.4	11
132	A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene, 2022, 41, 3289-3297.	5.9	11
133	Conformationally constrained analogues of diacylglycerol (DAG). 3. Interaction of α-alkyl-γ-lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1101-1106.	2.2	10
134	Design and synthesis of bioisosteres of ultrapotent protein kinase C (PKC) ligand, 5-Acetoxymethyl-5-hydroxymethyl-3-alkylidene tetrahydro-2-furanone. Archives of Pharmacal Research, 1998, 21, 452-457.	6.3	10
135	Chain-branched 1,3-dibenzylthioureas as vanilloid receptor 1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1751-1755.	2.2	10
136	Design and synthesis of protein kinase C epsilon selective diacylglycerol lactones (DAG-lactones). European Journal of Medicinal Chemistry, 2015, 90, 332-341.	5.5	10
137	2-Sulfonamidopyridine C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides as potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry, 2016, 24, 1231-1240.	3.0	10
138	Discovery of novel anti-breast cancer agents derived from deguelin as inhibitors of heat shock protein 90 (HSP90). Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127374.	2.2	10
139	In vitro characterization of the thermoneutral transient receptor potential vanilloid-1 (TRPV1) inhibitor GRTE16523. European Journal of Pharmacology, 2020, 871, 172934.	3.5	10
140	Synthesis of two Rigid Diacylglycerol Analogues Having a 1,7-Dioxasjuro[4.4]nonane Bis-Î ³ -butyrolactone Skeleton.4.1. Synlett, 1994, 1994, 206-208.	1.8	9
141	Structure–activity relationships of simplified resiniferatoxin analogues with potent VR1 agonism elucidates an active conformation of RTX for VR1 binding. Bioorganic and Medicinal Chemistry, 2004, 12, 1055-1069.	3.0	9
142	Synthesis of 7′-[123 l]iodo- d -luciferin for in vivo studies of firefly luciferase gene expression. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1161-1163.	2.2	9
143	Halogenation of 4-hydroxy-3-methoxybenzyl thiourea TRPV1 agonists showed enhanced antagonism to capsaicin. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 214-219.	2.2	9
144	Non-vanillyl resiniferatoxin analogues as potent and metabolically stable transient receptor potential vanilloid 1 agonists. Bioorganic and Medicinal Chemistry, 2009, 17, 690-698.	3.0	9

#	Article	IF	CITATIONS
145	Discovery of Benzopyridone-Based Transient Receptor Potential Vanilloid 1 Agonists and Antagonists and the Structural Elucidation of Their Activity Shift. Journal of Medicinal Chemistry, 2021, 64, 370-384.	6.4	9
146	Conformationally constrained analogues of diacylglycerol (DAG)-II. Differential interaction of δ-lactones and γ-lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry, 1993, 1, 119-123.	3.0	8
147	Thiourea analogues of resiniferatoxin as ligands for the vanilloid receptor. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1331-1334.	2.2	8
148	Structure activity relationships of benzyl C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides as potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry, 2015, 23, 6844-6854.	3.0	8
149	t-Butyl pyridine and phenyl C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry, 2017, 25, 2451-2462.	3.0	8
150	Conformationally constrained analogues of diacylglycerol (DAG). 4. Interaction of α-alkylidene-Î ³ -lactones with protein kinase C (PK-C). Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1107-1110.	2.2	7
151	Discovery of 1-(1H-indazol-4-yl)-3-((1-phenyl-1H-pyrazol-5-yl)methyl) ureas as potent and thermoneutral TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127548.	2.2	7
152	Discovery of highly potent human glutaminyl cyclase (QC) inhibitors as anti-Alzheimer's agents by the combination of pharmacophore-based and structure-based design. European Journal of Medicinal Chemistry, 2021, 226, 113819.	5.5	7
153	Synthesis of two rigid diacylglycerol analogues having a perhydro furo[34-b]furan bis-Î ³ -butyrolactone skeleton. 2 Tetrahedron Letters, 1993, 34, 4313-4316.	1.4	6
154	Synthesis of two rigid diacylglycerol analogues having a perhydro furo[3,2-b]furan bis-Î ³ -butyrolactone skeleton. 3 Tetrahedron Letters, 1993, 34, 4317-4320.	1.4	6
155	Conformationally constrained analogues of diacylglycerol. 9.1 the effect of side-chain orientation on the protein kinase C (PK-C) binding affinity of σ-lactones. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2405-2410.	2.2	6
156	A Facile and Practical Synthesis of Capsazepine, a Vanilloid Receptor Antagonist. Synthetic Communications, 1999, 29, 4127-4140.	2.1	6
157	Polar 3-alkylidene-5-pivaloyloxymethyl-5′-hydroxymethyl-î³-lactones as protein kinase C ligands and antitumor agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1008-1012.	2.2	6
158	Structure–activity relationships and molecular modeling of the N-(3-pivaloyloxy-2-benzylpropyl)-Nâ€2-[4-(methylsulfonylamino)benzyl] thiourea template for TRPV1 antagonism. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3656-3660.	2.2	6
159	The carbonate analogues of 5′-halogenated resiniferatoxin as TRPV1 ligands. European Journal of Medicinal Chemistry, 2013, 68, 233-243.	5.5	6
160	Beyond the affinity for protein kinase C: exploring 2-phenyl-3-hydroxypropyl pivalate analogues as C1 domain-targeting ligands. MedChemComm, 2015, 6, 547-554.	3.4	6
161	Novel Radiolabeled Vanilloid with Enhanced Specificity for Human Transient Receptor Potential Vanilloid 1 (TRPV1). Journal of Medicinal Chemistry, 2017, 60, 8246-8252.	6.4	6
162	Structure-activity relationship of leucyladenylate sulfamate analogues as leucyl-tRNA synthetase (LRS)-targeting inhibitors of Mammalian target of rapamycin complex 1 (mTORC1). Bioorganic and Medicinal Chemistry, 2019, 27, 1099-1109.	3.0	6

JEEWOO LEE

#	Article	IF	CITATIONS
163	The KDM5 Inhibitor KDM5-C70 Induces Astrocyte Differentiation in Rat Neural Stem Cells. ACS Chemical Neuroscience, 2021, 12, 441-446.	3.5	6
164	Conformationally constrained analogues of DAG.7. Interaction of a medium-size ε-lactone with protein kinase C (PK-C) Bioorganic and Medicinal Chemistry Letters, 1994, 4, 543-548.	2.2	5
165	Conformationally constrained analogues of dag .8. Changes in PK-C binding affinity produced by isosteric groups of the 3-O-acyl function in 2-deoxy-L-ribonolactones. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1369-1374.	2.2	5
166	Halogenation of 4-hydroxy/amino-3-methoxyphenyl acetamide TRPV1 agonists showed enhanced antagonism to capsaicin. Bioorganic and Medicinal Chemistry, 2010, 18, 8092-8105.	3.0	5
167	Physiologically based pharmacokinetic modeling of SNU-0039, an anti-Alzheimer's agent, in rats. Journal of Pharmacokinetics and Pharmacodynamics, 2011, 38, 637-651.	1.8	5
168	Receptor activity and conformational analysis of 5′-halogenated resiniferatoxin analogs as TRPV1 ligands. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 299-302.	2.2	5
169	The SAR analysis of TRPV1 agonists with the α-methylated B-region. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5227-5231.	2.2	5
170	α-Methylated simplified resiniferatoxin (sRTX) thiourea analogues as potent and stereospecific TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2685-2688.	2.2	5
171	6,6-Fused heterocyclic ureas as highly potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 803-806.	2.2	5
172	Synthesis and biological evaluation of 3-(2-aminoethyl) uracil derivatives as gonadotropin-releasing hormone (GnRH) receptor antagonists. European Journal of Medicinal Chemistry, 2018, 145, 413-424.	5.5	5
173	4-Aminophenyl acetamides and propanamides as potent transient receptor potential vanilloid 1 (TRPV1) ligands. Bioorganic and Medicinal Chemistry, 2018, 26, 4509-4517.	3.0	5
174	Functional Group-Dependent Induction of Astrocytogenesis and Neurogenesis by Flavone Derivatives. Biomolecules, 2019, 9, 812.	4.0	5
175	Synthesis of bis- $\hat{1}^3$ -butyrolactones containing conformationally constrained (S)- and (R) Tj ETQq1 1 0.784314 r	gBT /Over 3.0	loc뵻 10 Tf 50
176	Conformationally constrained diacylglycerol (DAG) analogs: 4-C-hydroxyethyl-5-O-acyl-2,3-dideoxy-D-glyceropentono-1,4-lactone analogs as protein kinase C (PKC) ligands. European Journal of Medicinal Chemistry, 2004, 39, 69-77.	5.5	4
177	Conformationally constrained analogues of Nâ€2-(4-tert-butylbenzyl)-N-(4-methylsulfonylaminobenzyl)thiourea as TRPV1 antagonists. European Journal of Medicinal Chemistry, 2009, 44, 322-331.	5.5	4
178	2-(4-Methylsulfonylaminophenyl) propanamide TRPV1 antagonists: Structure–activity relationships in the B and C-regions. Bioorganic and Medicinal Chemistry, 2012, 20, 1310-1318.	3.0	4
179	α-Arylidene Diacylglycerol-Lactones (DAG-Lactones) as Selective Ras Guanine-Releasing Protein 3 (RasGRP3) Ligands. Journal of Medicinal Chemistry, 2018, 61, 6261-6276.	6.4	4
180	Discovery of novel heat shock protein (Hsp90) inhibitors based on luminespib with potent antitumor activity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127165.	2.2	4

#	Article	IF	CITATIONS
181	Discovery of 5-(N-hydroxycarbamimidoyl) benzofuran derivatives as novel indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127963.	2.2	4
182	Design and synthesis of heterocyclic analogues of mycophenolic acid as potential chemotherapeutic agents. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 861-866.	2.2	3
183	5-Acyloxy-5-hydroxymethyltetrahydro-2-furancarboxylate as a novel template for protein kinase C (PKC) binding. Il Farmaco, 2001, 56, 203-210.	0.9	3
184	3D-QSAR analysis of conformationally constrained diacylglycerol (DAG) analogues as potent protein kinase C (PK-C) ligands. Bioorganic and Medicinal Chemistry, 2004, 12, 2639-2644.	3.0	3
185	Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2539-2542.	2.2	3
186	2-(Halogenated Phenyl) acetamides and propanamides as potent TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2021, 48, 128266.	2.2	3
187			